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Abstract 
This study undertakes a comparative analysis of the performance of machine 
learning and traditional survival analysis techniques in the insurance industry. The 
techniques compared are the traditional Cox Proportional Hazards (CPH), 
Random Survival Forests (RSF) and Conditional Inference Forests (CIF) machine 
learning models. These techniques are applied in a case study of insurance 
portfolio of one of Ecuador's largest insurer. This study demonstrates how 
machine learning techniques perform better in predicting survival function 
measured by the C-index and Brier Score. It also demonstrates that the predictive 
contribution of covariates in the RSF model is consistent with the traditional CPH 
model. 
 
Keywords: análisis de supervivencia, machine learning, tasas de caídas, random 
survival forest. 
 

Resumen 
 
Este estudio realiza un análisis comparativo del rendimiento de las técnicas de 
machine learning y tradicionales de análisis de supervivencia. Las técnicas 
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comparadas son el tradicional modelo de Cox Proportional Hazards (CPH) y las 
técnicas de machine learning Random Survival Forest (RSF) y Conditional 
Inference Forest (CIF). Estas técnicas se aplican para el estudio de una cartera de 
seguros de una de las Compañías más grandes de Seguros de Ecuador. Este estudio 
demuestra un mejor rendimiento de las técnicas de machine learning en la 
predicción de la función de supervivencia medidos a través del C-index y el Brier 
Score. También se demuestra que la aportación predictiva de las covariables en el 
modelo RSF es consistente con el modelo tradicional CPH. 
 
Palabras clave: análisis de supervivencia, machine learning, tasas de caídas, 
random survival forest. 
 

1. Introduction 
 
Under the global regulatory framework of IFRS 17 (International Accounting 
Standards Board, 2017) and the European Solvency II standard, insurance 
companies are required to estimate future lapse rates to calculate their best 
estimate liabilities. 
 
According to EIOPA (2010) the lapse risk in an insurance portfolio is the most 
important risk, accounting for almost 40% of the capital requirement within the 
life underwriting risk module that includes risk factors such as longevity, 
mortality, disability, catastrophe and expenses. 
 
Modeling the risk of lapse rates in life insurance is directly related to the benefit 
derived from the insured lapse. This benefit results from the penalty on the 
provision made at the date of lapse. A penalty is set over the lapsed amount to 
compensate for the increase in mortality risk in the remaining portfolio, to avoid 
a financial mismatch in insurance cash flows, and to discourage a lapse decision 
by policyholder (Eling and Kiesenbauer, 2014; Eling and Kochanski, 2013). 
Under such conditions, high lapse rates decrease insurance reserves but increase 
capital requirements. 
 
Traditional Cox proportional hazards (CPH) models have been generally used for 
estimating the survival function of the time-to-event random variable and, 
consequently, the future lapse rates (Brockett et al., 2008; Eling and Kiesenbauer, 
2014; Pinquet, Guillén, and Ayuso, 2011), though more recently, a few studies 
have used machine learning techniques (Aleandri and Eletti, 2020). 
 
Predictive modeling was proposed in Eling and Kochanski (2013) to explore the 
problem. Machine learning predictive techniques, such as random survival forest 
(RSF) present advantages in that they estimate future lapse rate probabilities at 
the policy level without assuming a proportional relationship among 
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policyholders, nor assuming an identical base function for all policyholders. 
Furthermore, it’s robust to outliers and does not suffer from convergence problem. 
In this study, the RSF, conditional inference forests (CIF), and CPH models are 
applied at the policy level in the insurance portfolio of an Ecuadorian life 
insurance company. A comparative analysis is undertaken to evaluate the viability 
of machine learning techniques, by interpreting their outputs and assessing their 
consistency. The study concludes by providing some practical actuarial 
considerations. 
 
For the development of these models, the following R libraries were selected: 
randomForestSRC (Ishwaran and Kogalur, 2017), survival Therneau and Lumley, 
2015), party (Zeileis, Hothorn, and Hornik, 2010) and PEC (prediction error 
curves) (Gerds, 2017); and the outputs were compared to their equivalents in the 
ranger package using C++ code (Wright and Ziegler, 2017) and also implemented 
in PySurvival} Python package (Fotso et al., 2019). 
 
The models section outlines the theoretical formulation and algorithms for 
estimating the survival function, then provides two indicators to assess the 
predictive power of the models.  
 
The data description section of this paper describes and analyzes the dataset.  
 
The analysis and results section compares the outcomes of the CPH and RSF 
models, and the importance of covariates in the lapses is explained. For practical 
actuarial purposes, the RSF model allows for the prediction of individual lapse 
rates and the creation of differentiated risk groups. The final section compares the 
predictive power of the proposed models. 
 
 

2. Models 
 
This section details the mathematical formulation and the algorithms of the 
various models used for survival analysis −namely, the machine learning 
techniques RSF and CIF, and the traditional CPH model. 
 
The survival function of the random variable T is given by ( ) ( )S t Pr T t= ≥ . For 
the modeling of T, it is necessary to set ( , ,X )i i iT δ , where 1, ..,i n∈  are 
individuals, iT  is the time-to-event, iδ  is as defined by (1), and 1X ( ,..., )i i pix x=   
is the vector of explanatory variables. 
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1  if  status=lapse

0 otherwise.       
 

 
iδ =







 (1) 

2.1 Random Survival Forests (RSF) 
 
 Random Forests is one of the most interesting machine learning techniques for 
classification and regression. This technique was applied to survival analysis in a 
proposal of Ishwaran, Kogalur, Blackstone, and Lauer (2008) as an extension of 
the original paper of Breiman (2001). 
 
An advantage of this model is that it is totally non-parametric, and therefore, does 
not assume a distribution for the relationship between the predictors and the 
response variable. In addition, it captures linear and non-linear relationships 
between the explained variable and the predictor variables. Another important 
feature is that it finds interactions between covariates because the learning comes 
from the ensemble decision trees. Outliers in data does not affect it, nor suffer 
from convergence problems. 
 
This model does not require the assumption of the CPH model that there are 
proportional hazards among individuals; instead, it allows the construction of 
survival functions with different shapes for each insured. In addition, the 
assumption of the same hazard rate basic for all insured is avoided because it is 
inconsistent with the reality. 
 
Survival trees are built by splitting each parent node into two daughter nodes 
starting at the root, which comprising the full dataset. A split is performed 
according to a survival criterion that maximizes the difference between daughter 
nodes (we use the log-rank test explained below); such a split is repeated on each 
subsequent node in a binary manner. This process is repeated to build n trees, and 
then ensemble techniques are used to obtain the final estimators, in this case the 
average of all trees. 
 
The algorithm has double randomness. First, a random sample is obtained by 
replacing the original data in each new tree. Second, the parent node is split into 
two daughters using a randomly selected covariate jx . Due to the law of large 
numbers, this double randomness leads to the convergence of the prediction error 
(PE) (refer to Figure Figure 1). It describes the number of trees larger the PE 
converge with a higher accuracy Breiman (2001). 
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Figure 1. Demonstration of prediction error convergence using our dataset 

 
 
The algorithm is implemented as follows: 
 

1. Draw B samples of average size comprising 63% of the original data with 
replacement (average bootstrap sample in n trials -1/e approx). 

2. Grow a survival tree for each bootstrap sample; at each tree node, p 
covariates are randomly selected. 

3. The parent node is split with respect to covariate *x  and its value *c , 
which maximizes the survival difference in the score function as defined 
in equation (3). 

4. Expand the tree to its maximum size provided that the terminal nodes have 
0d >  event cases. 

5. Calculate the cumulative hazard function (CHF) for each terminal node 
of the tree, as defined in equation (5). 

6. Average the CHF and survival function over the bootstrap samples at 
terminal nodes. 

7. Calculate the PE of the ensemble according to C-index described in 
section below. 
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In this study, the survival criterion used to make the split of each parent node w is 
the log-rank. The cutoff jc for each variable jx  is determined in such a way that 
one daughter node maintains the values ji jx c≤  and the other maintains the 
observations ji jx c> : 
 
 , ,{ : , }, { : , }j j

k l i k ji j k r i k ji jY i T t x c Y i T t x c= ≥ ≤ = ≥ > , (2) 

 
where jix  is the value of jx  for individual 1, ...,i n= , ,

j
k ld and ,

j
k lY are the events 

and the policies exposed at risk respectively in the daughter left node l . 
Similarly let ,

j
k rd and ,

j
k rY refer to the right daughter node, let , ,

j j
k k l k rY Y Y= +  and  

, ,
j j

k k l k rd d d= + ; and n is the number of insured at the parent node under condition 

that , ,
j j

k l k rn n n= + . 
 
Let 1 2 ... mt t t< < <  be the different event times in the parent node w, the log-rank 
test for a split at the value jc  for an x-variable jx  is: 
 

 1

1
1

1

, ,

, ,

( )
( , )

( )( )

m
j j k

k l k l
k k

j j j jm
k l k l k k

k
k k k k

dd Y
YL c x

Y Y Y d d
Y Y Y

=

=

 
 −
 

=  
− − − 

∑

∑
 (3) 

 
The choice of the best split for w is determined by x∗  and maximizing the 
difference in survival criterion between the daughter nodes { , }r l  such that 
| ( , ) | | ( , ) |j jL c x L c x∗ ∗ ≥  for all j. 
 
A terminal node h is found when a saturation point is reached because no new 
daughters can be formed. 
 
Once B trees are obtained, the ensemble technique is applied. At each node 
terminal h in all trees, the cumulative hazard function (CHF) is calculated with 
the Nelson-Aalen estimator over the 1 2 3{ , , , ..., }k Nt t t t t∈  and the insured status. 
All insured forming the terminal node h have the same CHF, then 

( | X ) ( )b i hH t H t=  if Xi h∈ , 
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,

( )
k

k h
h

t t k h

d
H t

Y≤

=∑  (4) 

An average over the bootstrap samples is calculated to obtain the CHF estimation 
( | X )e iH t  in the forest. For an insured with covariates Xi , ( | X )b iH t  is the CHF, 

where B is the number of samples: 
 

 
1

1( | X ) ( | X )
B

e i b i
b

H t H t
B =

= ∑  (5) 

 
The non-parametric Kaplan-Meier is used to predict the survival function in the 
forest. For an insured with covariates Xi  and B samples, it is: 

 
1

1 , ,

, ,

( )
( | X ) k b k b

k b k b

B
t t

e i
b t t t

Y d
S t

B Y= ≤

 −
 =
 
 

∑ ∏  (6) 

 
The RSF model exhibits the conservation-of-events principle, which asserts that 
the sum of the estimated CHF over the observed time at each terminal node in a 
tree equals the total number of events in the dataset. 
 
 
2.2 Conditional Inference Forests (CIF) 
 
A CIF algorithm is proposed by Hothorn, Hornik, and Zeileis (2006). This 
presents advantages similar to the RSF model in comparison with traditional 
models, but the split calculation and the ensemble formula are different. 
 
The algorithm is implemented as follows: 
 

1. Test the null hypothesis of independence between any of the p covariates 
and the response variable; the test is based on log-rank transformed 
statistic. 

2. Tree growth is stopped if the null hypothesis cannot be rejected; 
otherwise, a th

jx  covariate with the strongest level is selected according 

its p-value. 
3. The covariate selected jx  is divided into two disjoints sets based on 

multiples adjusted p-values (Montecarlo simulations or Bonferroni 
corrections), on univariates p-values or on values of the test statistic; and 
when the specified criterion is exceeded, the parent node is split. 
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4. Apply the ensemble to the samples to obtain the survival 
function(explained below) and the CHF. 

 
The survival function CIF ensemble is a Kaplan-Meier weighted estimator: 
 

 1

1

1
,

,

,

( | X )
k b

B

k b
b

e i B
t t

k b
b

d
S t

Y

=

<

=

 
 
 = −
 
 
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∑
∏

∑
 (7) 

 
 
2.3 Cox Proportional Hazards (CPH) 
 
In this section, the survival function ( | X )iS t  is adjusted by applying the classic 
Cox model technique using the assumption of proportional hazards because this 
is one of the most widely used in survival analysis. The adjustment is made taking 
into account the model assumptions and using the linear estimation model for the 
log of the hazard rate ( | X )i ilogh t  as per Crumer (2011), based on an exponential 
distribution: 
 
 1 1 2 2( | X ) ...i i i i p pilogh t x x xα β β β= + + + +  (8) 

 
the insured hazard rate with a vector of covariates Xi is defined:  
 
 1 1 2 2( | X ) ( ... )i i i i p pih t exp x x xα β β β= + + + +  (9) 

 
where i is an insured, α  is a constant which represents the log-base hazard 

( )ologh t , and 1 ... pβ β  are the parameters estimated ( )β  using the partial 
likelihood. 
 
The partial likelihood function is the product of the conditional probability for all 
individuals in the sample according to Cox's proporsal. It does not involve the 
unspecified underlying hazard function oh  but covariates, and β  coefficients that 
can be estimated. Censored observations contribute to the partial likelihood 
through the risk sets. 
 
Suppose that m of the survival times from n individuals are uncensored and 
distinct, and n m− 1 2 ... mt t t< < <  be the ordered m 
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( )t iR  be the risk set at time it , it consists of all insured 
who are at risk at time it . The probability that the failure is on the individual i at 
time ( )it  is ( )( , )iP i t : 
 

 1

1( )

( )

( )

( )

( )
( , )

( )
t i

p

j j i
j

i p

j jl
l R j

exp x
P i t

exp x

β

β

=

∈ =

=
∑

∑ ∑
, (10) 

 
each lapse contributes a factor, and hence the partial likelihood function is:  
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1
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j
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 (11) 

 
After applying the log-likelihood function, β coefficients are estimated solving 
the simultaneous equations using iterative procedures like Newton-Raphson (for 
more details see Lee and Wang (2013)). 
 
When all covariates are set to zero ( ) ( )ot logh tα = , and the log-hazard function is 
defined by: 
 
 1 1 2 2( | X ) ( ) ( ... )i i o i i p pih t h t exp x x xβ β β= + + + , (12) 

 
this leads to the survival function equation: 
 
 1 1 2 2( | X ) ( ( ) ( ... ))e i o i i p piS t exp h t exp x x xβ β β= − + + + . (13) 

 
To demonstrate the proportional hazard assumption in the Cox model, two insured 
a and b are considered. Let 1 1 2 2 ...a a a p pax x xφ β β β= + + +  and 

1 1 2 2 ...b b b p pbx x xφ β β β= + + + . The ratio of their estimated hazard is provided by: 
 

 ( ) ( ) ( ) [ ]
( ) ( ) ( )

a o a
a b

b o b

h t h t exp exp
h t h t exp

φ
φ φ

φ
= = − . (14) 
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2.4 Assessment of predictive power 
 
The performance of the proposed models were compared using two indicators 
─the Concordance index (C-index) and the Brier Score─ which were measured 
over the test dataset. A model has a better predictive power when its C-index is 
higher, and its Brier Score is lower, than that of the other models. 
 
To assess the C-index, an evaluation pair with different observed responses is said 
to be concordant if the observation with the lowest level of the response has a 
lower predicted value than the observation with the highest level. 
 
The C-index evaluates for each insured the performance of the model at each time 
t, and it measures how well the predictor ranks two randomly selected insured 
lives in terms of survival. 
 
In survival analysis, the predictive power of the model is measured by C-index, 
and is equivalent to the area under of curve (AUC). In addition, the error rate for 
a survival model is measured by 1-C-index. 
  
Let 1 2 3{ , , , ..., }mt t t t t∈  denote each unique times in the test dataset. The predicted 
C-index for insured is defined by: 
 

 
1

( ) ( | X )
m

i e k i
k

H t
=

Γ =∑ , (15) 

 
an individual i has a worse predicted outcome than individual j if ( ) ( )i jΓ > Γ . 
 
The C-index is calculated as follows (Ishwaran and Kogalur, 2017): 

1. Form all possible pairs of observations over all data. 
2. Omit those pairs where the shorter event time is censored. In addition, 

omit pairs ( , )i j  if i jT T=  unless 1 0( , )i jδ δ= =  or 0 1( , )i jδ δ= =  or 

1 1( , )i jδ δ= = .The last restriction only allows ties in event times if at least 

one of the observations is an event. Let the resulting pairs be denoted by 
Υ .Let Permissible = | |Υ . 

3. If i jT T≠ , count 1 for each y∈Υ  in which the shorter time had a worse 

predicted outcome. 
4. If i jT T≠ , count 0.5 for each y∈Υ in which ( ) ( )j iΓ = Γ . 
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5. If i jT T= , count 1 for each y∈Υ  in which ( ) ( )j iΓ = Γ . 

6. If i jT T= , count 0.5 for each y∈Υ  in which ( ) ( )j iΓ ≠ Γ . 

7. The C-index is calculated count over all permissible pairs. Final ratio is 
calculated by C-index = Concordance/Permissible. 

8. The error rate is Error=1-C-index. If C-index = 0.5= Error this means that 
the model is doing no better than random guessing. 

 
The second indicator to assess the performance of three models is the Brier Score 

( , )eBS t S . It is defined as the error between the prediction and the actual data. For 
non-censored data, the formula is defined in equation (16) according to Mogensen, 
Ishwaran, and Gerds (2012): 
 
 2( , ) ( ( ) ( | X ))e i e iBS t S E Y t S t= −  (16) 

 
where ( )iY t  is the observed status (0,1) of an individual i at time t. 
 
For right censored data, the squared residuals for an insured are weighted using 
the inverse probability of censoring weights. The Brier Score integrated indicator  
for a dataset D of size n is calculated by: 
 

 2 2

1

11 0 1( , ) ( )( , ) [ ( | X )] [ ( | X )]ˆ ˆ( | X ) ( | X )

n
i i i

e e i e i
i i i i

I t t I t tBS t S S t S t
n G t G t

δ
=

 ≤ = > = − + − 
  

∑  (17) 

 
where ˆ ( | ) ( | X )i iG t x P C t x≈ > =  is the Kaplan-Meier estimate of the conditional 
survival function of the censoring times. 
 
 

3. Data description 
 
The data were derived from 39,572 policies issued by Ecuador’s largest life 
insurer, covering a period of 15 years from 2005 to 2019. 
 
The response and explanatory variables were processed and are described in 
Tables 1 and 2. All data processing was performed in Python. 
 
In survival analysis, the response variables comprise the following variables: 
status, and time-to-event. 
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The company principally sells two individual life products—Universal Life and 
Term Life —both of which are well known in the actuarial literature. Term life 
insurance is a pure risk product that guarantees a capital benefit upon the death of 
the insured. Universal life insurance similarly guarantees a capital benefit upon 
the death of the insured, but also accumulates a cash value at a minimum interest 
rate and the policyholder may voluntarily opt for the lapse amount instead; the 
lapse amount is equal to the policy value less any penalty, which decreases with 
the age of the contract. 
 
Table 1 
List of categorical our dataset 

Variable Statistics Comments 
Status In force 36,6%, Lapse 62,5%, 

others 0,95% 
Others include: death and 
expiration 

Sex F 43,03%, M 56,97% 
 

Risk state Smoker 6,37%, Non Smoker 
93,63% 

 

Payment 
frequency 

Annual 19,1%, Monthly 77,5%, 
Others 3,40% 

Others include: four-monthly, 
quarterly and biannual 

Product type Term life 24,05%, Universal life 
75,05% 

The original data present 
different commercial names for 
both 

Point of sales Quito 36,9%, Guayaquil 47,1%, 
Cuenca 8,2%, Manta 7,1%, 
Ambato 0,7% 

 

Distribution 
channel 

Corporate agents 11,7%, 
Individual agents 8,5%, Tied 
agents 79,8%, Others 0% 

 

Payment 
method 

Bank debit 82,7%, Credit card 
17,3%, Payroll 0% 

 

Profession A 76,7%, B 18,7%, C 3,7% Reserved variable 

 
 

 
Figure 2. 1a) Status response variable, and 1b) Distribution of policies by policy 

survival time and status 
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The data are right-censored in type. There are three reasons for policies to be 
censored: policies that reach maturity, policies that at the date of the concluding 
the study had not experienced the event, or policies that during the study were 
terminated for reasons other than lapse.  
 
Status is a binary variable that refers to the cancellation of an insurance contract 
before maturity. Lapse is the event of interest in this study. The other causes of 
termination are the policyholder's death, or policy expiration (premature 
termination guaranteed in law). The status variable was determined by equation 
(1) and its composition in our dataset is shown in Figure 2a). 
 
The time-to-event variable is the elapsed time calculated by the difference 
between the policy issue date and the event date. In case of right censored, this 
variable is calculated by the difference between the policy issue and the study 
closing date. 
 
The principal statistics of the explanatory and response variables are indicated in 
Table 1 (categorical variables) and 2 (interval type variables). 
 
Figure 2a) indicates there is a higher proportion of policyholders that have lapsed 
before their expiration. 
 
Figure 2b) shows the distribution of the response variable time-to-event. There 
are higher rates of lapses at the beginning of the insurance contract. A peak is 
reached early on, usually within the first two years, after which the lapse rates 
decreases rapidly (Bauer, Gao, Moenig, Ulm, and Zhu, 2017). 
 
A correlation analysis was performed as follows, Figure 3 summarizes all these 
correlations in differentiated groups. 
 

• Using the Pearson coefficient to evaluate strength and direction of 
relationship among interval variables.  

• For categorical and ordinal variables, the Cramer’s V measure (Cramér, 
1946) was determined.  

• To conduct a correlation analysis between categorical and interval 
variables, the latter were transformed into binaries ones (i.e.,1 if the value 
is over the median, 0 otherwise) and thereafter, the Cramer’s V correlation 
was determined. 

From the original dataset, the initial insured capital and final insured capital 
variables were excluded because they yielded high correlation between them and 
with the premium variables. In addition, the option benefit variable has a perfect 
correlation with the product type and was removed from the study. The remaining 
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correlation coefficients among variables do not yield high values and are included 
in the study. There are not missing values in the dataset. Categorical variables are 
transformed into dummy (1,0) according to the number of categories indicated in 
Table 1. Payment frequency is the only ordinal variable in the dataset. 
 
Table 2. 
List of interval variables in our dataset 

Variable Statistics Comments 
Issue date from 15/07/2005 to 27/12/2019 For policies not terminated by 

31/12/2019 apply right censored 
Time Min 0, Mean 960.48, Max 5,249, 

std 960 
In days basis 

Age Min 18, Mean 38.18, Max 79 
 

Annual 
premium 

Mean 219.32, std 646.53 In American dollars 

Supplementary 
premium 

Mean 40.20, std 522.50 For other supplementary 
coverages (disability, health, 
etc.) 

 
To apply the models RSF, CIF and CPH (as explained above), the data was 
randomly divided into training (70%) and test (30%) datasets. 
 

 
 
Figure 3. Correlation matrix: Cramer’s V and Pearson (top left) coefficients 
according to the type of the variable 



Modeling lapse rates using machine learning: a comparison... 

175 

 
 

4. Results and analysis 
 
This section presents and discusses the results of the RSF and CPH models. We 
focus on the consistency of RSF results (where variable importance and partial 
dependence of the covariates are computed), as compared to the traditional Cox 
model estimation. Additionally, for practical purposes, direct application using 
RSF model are shown such as estimating individual survival functions and 
creating risk groups. 
 
The next section demonstrates that the performance of the machine learning 
techniques is better than the traditional CPH model for this dataset. Given that the 
results of the CIF and RSF techniques are similar, the focus throughout will be on 
the RSF model results alone. 
 
 
4.1 Statistical analysis 
 
The Random Survival Forests results and settings are summarized in Table 3. 
Note that n-split parameter has been set to a small number to avoid bias to the 
continuous variables in the variable importance calculation (Ishwaran and 
Kogalur, 2017). 
 
Table 3 
RSF: Results and settings 
Training dataset size: 27,700 
Number of lapses: 17,297 
Number of trees: 1 
Forest terminal node size: 1,000 
Average no. of terminal nodes: 353.75 
No. of variables tried at each split: 4 
Resample size used to grow trees: 27,700 
Splitting rule: Logrank 
Number of random split points: 4 
Prediction Error (PE): 39.11% 

 
The importance of the explanatory variables or variable importance (VIMP) is 
calculated. For this, the values of the variable thx  are randomly permuted, thus 
losing the relationship with the response variable. For each variable jx , VIMP is 
obtained as the difference between the PE of the permuted assignment and the 
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original ensemble. If the original variable has an important relationship with the 
response variable, the PE value increases proportionally. None of the variables 
exhibit negative effects, so all have been included in the estimation of the RSF 
model. The results are shown in Figure 4. 
 

 
Figure 4. VIMP for explanatory variables using the permutation criterion 
 
 
The partial dependence (marginal importance) of each explanatory variable has 
been obtained for the RSF model. For this, a value of the covariate jx  is fixed 
while adjusting for all other covariates then survival function ( | )xS t x  is 
calculated by equation (18). Figure 5 summarizes the 5-year predicted survival 
function and the marginal importance of each predictor variable over the estimated 
survival time. 
 

 
1

1( | ) ( | X , )
n

x e i ji
i

S t x S t x x
n =

= =∑  (18) 

 
Analysis of the influence that each of the explanatory variables has on the 
response variables is as follows: 

• Premium payment method: Payment by bank debit reduces the probability 
of insurance lapse, and thus extends the permanence in the portfolio.  

• Premium amount: Retention increases as amount of the premiums (both 
the main coverage and the supplementary ones) increases until these reach 
a peak then the retention decreases. 
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• Point of sale: There is a lower dispersion and a greater probability of 
insurance lapse in the city of Guayaquil than in the other cities, while in 
Quito, there is more dispersion and lower lapse probability. 

• Age: The relationship noted between age and time spent in the portfolio 
confirms the emergency fund hypothesis that lapse rates are higher at 
younger ages. 

• Distribution channel: The contribution of this variable to the survival 
function is similar for all underlying categories, even though the “Tied 
agent” category accounted for 80% of the sales in the portfolio. (Note that 
this variable was excluded in the Cox model, as it had no statistical 
significance). 

• Profession: It’s a reserved variable in our dataset, the contribution to 
retention is notably different across its categories. 

• Risk state: Non-smoker insured present higher retention in the portfolio. 
• Sex: This variable has a similar impact for both male and female 

categories in the RSF model, and in the CPH model it was excluded.  
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Figure 5. Marginal importance for explanatory variables: The Top Panels reflect 

the interval variables, and then categorical ones by VIMP importance 
 
For practical actuarial purposes, the RSF model permits individual predictions of 
the CHF and survival function for each insured in the portfolio. An individual 
sample is dropped from the root in the training forest, and its survival estimators 
are calculated by the ensemble of the results at its terminal nodes. Refer to Figure 
6a) for estimations of a random sample of policyholders in the portfolio. 
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Figure 6. a) Predicted survival curves for ten randomly selected insured,and b) 

Segmentation of risk groups based on time predicted 
 
Risk groups can be created to give a differentiated treatment in terms of risk 
management and create groups of homogeneous risk according to Solvency II, 
marketing campaigns, etc. In this case, four differentiated risk groups have been 
created according to the quartiles of the distribution of the estimated survival time 
of the test dataset, as shown in Figure 6b). 
 
In the Cox Proportional Hazards model, all explanatory variables described in 
Tables 1 and 2 are considered. Regarding “dummyfication” process previously 
explained, a reference level is chosen for each of the categorical variables, and the 
explanations and analysis are relative to each such reference level. 
 
In a backward modeling exercise, the “individual agent” category in the 
“Distribution channel” covariate was excluded at a 10% level of significance, and 
the “Sex” covariate as well as the “Others” category in the “Distribution channel” 
covariate were similarly excluded at a 5% level of significance. Therefore, in the 
final CPH model, sex and distribution channel were not taken into account. 
 
In Table 4 hazards rates and their p- values are shown. The analysis is relative to 
the level of reference of each variable.  
 
For the Product type variable, the level of reference is the “Term life” product, 
which means the “Universal life” product has a 9.60% (1-hazard ratio) less risk of 
lapse than Term life assuming the remaining variables do not change.  
 
For the Frecuency of payment variable, the risk of lapse increases relative to an 
increase in number of payments in a year. This means that at any point in time, 
there is a 7.03% higher probability of lapse for a policyholder paying monthly 
than for another paying quarterly. 
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The contribution to predicted survival time for each covariate is consistent with 
machine learning RSF model. The consistency is demonstrated because there is a 
perfect correspondence between marginal importance results in the RSF model 
and hazards ratios in the CPH model. 
 
Table 4. 
Cox Regression Results 
 

Variables Hazard ratio z Pr(z)  

Age 0,988 -13,399 e-16 *** 
Annual premium 1 -5,961 2.51e-09 *** 
Supplementary Prem. 1 -2,875 0.004037 ** 
Payment frequency 1,073 11,039 e-16 *** 
Product type Ref: Term life     

Universal life 0,904 -5,61 2,03e-08 *** 
Risk state Ref: Smoker     

Non smoker 0,819 -6,369 9,03e-12 *** 
Point of sale Ref: Guayaquil     

Ambato 0,741 -3,535 0.000407 *** 
Cuenca 0,815 -7,143 9.14e-13 *** 
Manta 0,908 -2,96 0.003080 ** 
Quito 0,729 -17,688 2e-16 *** 

Method of payment Ref: 
Payroll     

Bank debit 0,178 -5,718 1.08e-08 *** 
Credit card 0,301 -3,967 7.27e-05 *** 

Profession Ref: B     
A 0,815 -10,602 2e-16 *** 
C 1,446 9,383 2e-16 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
 
 
4.2 Results assessment of predictive power 
 
The results for the three proposed models were compared using two indicators 
─the Concordance index (C-index) and the Brier Score─. Figure 7a) plots the 
comparative C-index at each point in time t in the test dataset for the RSF (61.3%), 
CIF (60.8%), and CPH (58.8) models, respectively. 
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Figure 7. Comparative predictive power for three models: a) C-index, 
and b) Brier Score, at each point in time 

 
Using the test dataset, the Brier Score is, 0.167 for RSF, 0.163 for CIF, and 0.170 
for CPH. Figure 7b) plots the comparative results of the Brier Score at each point 
in time t for the three models. 
 
Additionally, the three models and the comparative measures of predictive power 
─namely, the C-index and Brier Score─ were implemented in PySurvival, an open 
source Python package for survival analysis modeling. The comparative results 
are similar because the base algorithm is identical (Wright and Ziegler, 2017). 
 
 

5. Conclusions 
 
This study implemented three models to estimate the survival function in an 
insurance portfolio, and assess the predictive power of each using the C-index and 
Brier Score measures, concluding that the RSF and CIF machine learning models 
perform better than the traditional CPH survival analysis model. 
 
The results of the relationships between the explanatory variables and the time 
predicted by the survival function in the RSF and CPH models are consistent for 
all covariates. For example, in the “Method of payment” variable, the “Bank 
debit” category indicates a higher marginal importance than the other underlying 
categories, which is consistent with the lower hazard rate for this category in the 
CPH model. The “Sex” variable does not have a differentiated marginal effect 
across its underlying categories in the RSF model, and has the lowest value in the 
VIMP analysis; this is reflected in the CPH model, where the “Sex” variable does 
not have statistical significance. 
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The existing literature has been compared using the VIMP in the RSF model, 
among the main determinants for the exercise of the lapse option by a policyholder 
are the “premium amount” and “age” explanatory variables. In the dataset used in 
this study, among the main determinants of lapse are the “payment method”, 
“point of sale”, and “distribution channel” explanatory variables. On the other 
hand, “sex” and “risk state” variables are not important in the lapse determination. 
 
For practical actuarial purposes, the RSF model allows for the estimation of 
individual probabilities of survival dissimilar at each future point in time, taking 
into account the insured explanatory variables; in this manner, the RSF better 
captures the heterogeneity of the characteristics of the insured. In addition, 
homogeneous risk groups may be also created for differentiated risk treatment, if 
required. 
 
Prediction of survival function using the RSF model is widely used in 
biostatistical studies with good results, in this case its results are supported by CIF 
model, used the for first time to study time-to-event data in an insurance portfolio. 
The viability of the RSF and CIF machine learning techniques demonstrated in 
this study indicate that their application can be extended to the insurance industry. 
 
The prediction of lapse rates using one model versus another could yield a 
significant variation in the determination of best estimate liabilities and solvency 
capital requirements for insurance companies, and therefore this is an important 
direction for future research. 
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