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Abstract 

In this paper, we discuss the insuring of flood losses across socio-economic 
environments, by pooling their risk exposures at continental and global levels. 
Grouping regions by their flood count over the last century, we cluster countries 
based on estimations of their value-at-risk, minimising the total value-at-risk 
from all clusters, as in Prettenthaler, Albrecher, Asadi, and Köberl (2017). Using 
heavy-tailed distributions to model the losses (presented as percentages of GDPs 
and adjusted to inflation), we seek an optimal risk pooling strategy across 
countries, irrespective of their socio-economic status. The financial benefits for 
such risk sharing, both at the continental and global levels, are quantified by the 
overall corresponding values-at-risk with or without pooling. We advocate this 
risk partner- ship across socio-economic environments, as a mechanism for 
reducing risk premiums and increasing efficiency in disaster response. 
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Resumen 

En este artículo se analiza el seguro en caso de inundación en diferentes países 
con diferentes niveles socio-económicos combinando sus exposiciones al riesgo, 
en primer lugar, a nivel continental y luego a nivel global.  Después de juntar las 
regiones según su número de inundaciones durante el último siglo, agrupamos 
los países en función de estimaciones de su valor en riesgo, minimizando el 
valor total en riesgo de todos los grupos, como en Prettenthaler, Albrecher, 
Asadi, and Köberl, (2017). Utilizando distribuciones de colas pesadas para 
modelar las pérdidas (presentadas como porcentajes del PIB y ajustadas a la 
inflación), buscamos una estrategia óptima de agrupación de riesgos entre 
países,  independientemente de su situación socioeconómica. Los beneficios 
económicos de dicha distribución de riesgos, tanto a nivel continental como 
mundial, se cuantifican mediante los correspondientes valores en riesgo con o 
sin agrupación.  Recomendamos esta agrupación de riesgo para todos los países, 
como un mecanismo para reducir las primas de riesgo y aumentar la eficiencia 
en la respuesta a desastres. 

Palabras  clave:   riesgo  de  inundación,  la  agrupación  de  riesgos,  valor  en 
riesgo, distribuciones de cola pesada. 

1. Introduction

Climate-related disasters made up 91% of all recorded disasters between 1998 
and 2017, with floods accounting for 43% of climate events (Wallemacq & 
House, 2017). Affecting over 2 billion people globally with associated economic 
losses of 656 billion USD (Wallemacq & House, 2017), floods are the most 
frequently occurring disaster type with consequences for more individuals than 
any other. Addressing the significance of flood risk on the global scale is 
therefore crucial for sustaining economic development. 

The International Disaster Database EM-DAT documents the occurrence and 
impacts of mass disasters throughout the world. Of all 5266 floods recorded in 
the database, spanning the years 1900 to 2020, 305 occurred in India and 304 in 
China. When restricted to include only those events with recorded total damages 
(of which there are 1770 floods), China places 51 times in the top 10% of floods 
associated with the highest damages, followed by the USA and India with 19 and 
15 events, respectively. Although the highest totalling 10% of floods occurred 
between 1931 and 2020, 76 of the 177 events were experienced within the last 
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10 years. The flooding of the Yangtze river in 1998 is associated with the 
greatest flood damages in China, second only to the 2011 flooding of Thailand. 
Although absolute economic losses are often greatest in upper-middle and high 
income countries due to increased asset exposure, considering losses relative to 
GDP the significance of the loss shifts to countries of lower economic 
development (Wallemacq & House, 2017), with the impact of floods increasing 
with the vulnerability of the environment (Broberg & Hovani-Bue, 2019).  

Wallemacq and House (2017) highlight the need to acknowledge the systematic 
under-reporting of flood data by low income countries. For flood events 
occurring between 1998 and 2017, low income countries reported just 13% of 
disasters, whilst the report rate in high income countries was 53%. Discussion of 
loss significance and future flood predictions in low income countries is 
therefore based on a small sample of the true disaster environment. 

Defined as the product of hazard (the flood, its intensity and probability of 
occurrence), exposure (the population and assets at risk) and vulnerability (the 
ability of the exposed to deal with the hazard) (Kron, 2005), flood risk has 
increased rapidly over time. Changes in each of the three risk components have 
initiated variations in the frequency and extremity of flood events. Demographic 
characteristics, socio-economic status and health are found to be the three 
leading empirical indicators of social vulnerability to floods (Rufat, Tate, Burton 
& Maroof, 2015). Although climate change is widely accepted as a key element 
in the global increase in flood risk, the influence of socio-economic changes on 
the significance of the risk means the relationship between climate change and 
flood risk is not transparent. Population growth, wealth and urban development 
in risk- prone areas experiencing rapid economic growth have significantly 
raised the exposure and vulnerability of communities to extreme floods 
(Jongman, Ward & Aerts, (2012) with this exposure increasing at a faster rate 
than the potential for strengthening risk reduction measures (ISDR, 2009). 

In line with the severity of the implications of increasing flood risk, significant 
literature exists on the study of the changing flood environment. Focusing on 
flood occurrence in Europe, Blöschl et al. (2020) report the current flood-rich 
period to be amongst the most significant of the last 500 years, with an increased 
flood phase temperature in contrast to historical periods. Douglas et al. (2008) 
present flood risk perceptions of particularly vulnerable populations through a 
vulnerability analysis of five flood-prone cities in Africa. The need for formal 
flood risk interventions in such countries is highlighted in this study, and 
heightened by the prevelance of informal settlements and high rates of 
population and urban growth in flood prone areas (Field, Barros, Stocker & 
Dahe, 2012). For a thorough review of literature on the human impact of floods 
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based on events between 1980 and 2009, see Doocy, Daniels, Murray and Kirsch 
(2013).  

Whilst attribution of trends in disaster losses to anthropogenic climate change is 
a debated topic (Bouwer, 2011; Visser, Petersen & Ligtvoet, 2014) the impact of 
climate change on flood risk hazard cannot be denied, with unparalleled 
increases in the frequency and severity of flood events expected in the coming 
years due to the intensification of the hydrological cycle (Field et al., 2012). The 
non-uniformity of the climate-risk relationship creates the need for region 
specific flood mitigation measures. Projected increases in flood risk in Southeast 
Asia are largely associated with estimated levels of socio-economic 
development, where exposure environment predictions place Asia as the most 
exposed region with respect to population (Hanson et al., 2011). Economic 
consequences of flood events in African countries on the other hand are expected 
to experience a climate driven rise (Winsemius et al., 2016). 

1.1 Flood insurance 

Flood insurance is essential to any flood risk management plan, providing a 
method for transferring risks associated with extreme flood events away from 
the exposed. Alongside improving financial preparedness, participation in risk 
transfer schemes has the capacity to influence behaviours and approaches to 
flood risk (Surminski, 2014). Adoption of risk reduction measures was not 
traditionally encouraged by insurers, however establishing guiding principles for 
the building of insurance programs, Kunreuther and Michel-Kerjan (2009) 
highlight the importance of encouraging such participant engagement in order to 
reduce vulnerability. The use of insurance as a risk management tool for 
lowering vulnerability is supported throughout the literature, see for Hudson, 
Botzen and Aerts, (2019), Surminski and Thieken (2017) and Surminski and 
Oramas-Dorta (2014). Behaviour change due to insurance participation may also 
move negatively as a result of moral hazard, where the insured behaves in a 
risky fashion, increasing the probability a loss is incurred (Prettenthaler et al., 
2017). Moral hazard poses a potential risk for insurers even at the government 
level (Surminski, 2014). 

In line with the varying socio-economic environment, risk transfer measures 
differ from country to country. Private schemes are common in the United 
Kingdom and Germany, whilst low-income countries generally rely on 
government and international aid to manage the consequences of extreme flood 
events (Michel-Kerjan & Kunreuther, 2011) (government relief is also the only 
source of financial support in the Netherlands despite a high level of flood risk 
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(Michel-Kerjan, 2010)). To reduce the reliance of flood victims on public 
assistance in the United States, the National Flood Insurance Program (NFIP) 
was introduced in 1968 following a series of severe floods. At the time, private 
insurers considered the offering of flood risk protection an unattractive form of 
coverage due to the dependent nature of claim occurrence and severity (Michel-
Kerjan, 2010). 

Whilst the importance of insurance in high income countries is widely 
acknowledged and well established, translating these principles to low and 
lower-middle income countries requires significant work. Implementation of 
innovative risk transfer mechanisms such as microinsurance and index-based 
insurance in low and middle income countries helps to improve the availability 
of insurance in such societies (Kron, 2009). Surminski and Oramas-Dorta (2011) 
present a detailed discussion of existing risk transfer schemes documented in the 
ClimateWise Compendiumb, a resource detailing natural hazard risk initiatives 
in low and middle income countries. 

Income, product price and risk perception are three fundamental determinants of 
insurance demand (Browne & Hoyt, 2000). In relation to natural disasters, risk 
attitudes significantly influence the willingness of individuals to purchase 
insurance (Surminski, 2014). Probability of loss and disaster experience are 
positively correlated with insurance demand (Browne & Hoyt, 2000; 
Kunreuther, 1984), whilst certainty of governmental relief decreases the 
likelihood of purchase (Crichton, 2008; Paudel, 2012). Referred to as charity 
risk, the latter is of particular concern in relation to flood insurance (Raschky, 
Schwarze, Schwindt & Zahn, 2013). Ranger and Surminski (2013) discuss 
drivers of non-life insurance demand, with a focus on the impact of climate 
change. In relation to low income countries, non-performance risks, insurer trust, 
financial literacy and the use of informal risk-sharing mechanisms all contribute 
to the low uptake rate of insurance schemes (Eling, Pradhan & Schmit, 2014) 

b “Compendium of disaster  risk  transfer  initiatives  in  the  developing  world”, 
2020, https://www.cisl.cam.ac.uk/business-action/sustainable-finance/climatewise/ 
pdfs/climatewise-compendium-of-disaster-risk-transfer.xlsm/view 

https://www.cisl.cam.ac.uk/business-action/sustainable-finance/climatewise/pdfs/climatewise-compendium-of-disaster-risk-transfer.xlsm/view
https://www.cisl.cam.ac.uk/business-action/sustainable-finance/climatewise/pdfs/climatewise-compendium-of-disaster-risk-transfer.xlsm/view
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Parallel to insurance demand, insurance penetration varies significantly by 
country (Outreville, 2013) and is positively correlated with income level 
(Ranger & Surminski, 2013). Of the ten most serious floods by economic 
loss between 2008 and 2017 2, the percentage of insured losses ranges from 
1.5% in China in 2010, to 36.4% in Australia in 2010/11. Addressing the 
impact of climate change on flood risk in Mumbai, Ranger et al. (2011) 
estimate a reduction of the indirect effects of a 1-in-100 year flood event by 
almost 50% through increase of insurance penetration to 100%. The study 
recognises the importance of risk mitigation measures, predicting a 70% 
reduction in flood losses through the upgrading of drainage systems. 
Improvements in penetration rates may also be observed through mandatory 
flood insurance schemes. Comparing the characteristics of catastrophe 
insurance systems in ten countries around the world, Paudel (2012) list 
mandatory insurance as one of their recommendations for policymakers, 
following analysis of insurance products with varying public-private balance. 
Government involvement and the mapping of risks are also included as key 
factors for the improvement of insurance mechanisms. “Option” and 
“bundle” insurance systems, favoured in countries including Belgium, 
Germany and Italy, and the UK, Japan, Portugal and Spain, respectively, are 
defined by Crichton (2008) as two insurance categories. Whilst the option 
system induces an environment for adverse selection and has low uptake 
rates, bundling enables alleviation of excessive rate increases through the di- 
versification of risks over time, disaster type and region, and is associated with 
much higher penetration. 

1.2 Risk pooling 

Geographical location is a significant determinant of the nature and timing 
of the occurrence of a particular hazard. Catastrophe risks are therefore 
naturally diversifiable when considering a large geographical area. 
Exploitation of this principle in the form of insurance risk pooling facilitates 
the response of member countries to certain yet unpredictable risks through the 
group management of their risk via the pool. The risk pooling mechanism 
improves the predictability of funding flows and al- lows for the spread of 
disaster costs, eliminating any unpredicted budget reallocation need due the 
requirements of crisis response (Broberg & Hovani-Bue, 2019). Investigating 
hypothetical risk pooling schemes in low and middle income countries, The 

2
“A world at risk: closing the insurance gap”, 2018, 

https://www.lloyds.com/news-and-risk-insight/risk-
reports/library/understanding-risk/a-world-at-risk 
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World Bank 3 reveal a reduction in the capital requirements of pooled risks 
versus non-pooled risks with a consequent reduction in risk premiums. 
Increased efficiency of disaster response through participation in risk pools 
greatly benefits ex- posed communities, with government aid in the traditional 
setting often deemed insufficient (Linnerooth-Bayer, Mechler & Pflug, 2005; 
Oxfam, 2005).  

Regional risk pools were first established in 2007 with the Caribbean 
Catastrophe Risk Insurance Facility, a government risk-sharing platform and 
the first ever multi-country risk pool. Created in response to the 
devastation of Hurricane Ivan in 2004, the scheme allows member countries to 
move away from their reliance on post-disaster humanitarian assistance 
through affordable and effective management of their catastrophe risk 
exposure. Costs are reduced by at least half the expected cost of equivalent 
coverage purchased individually per country, from the global market 
(Mahul & Signer, 2014). Further expansion of the insurance risk pooling 
scheme market following the success of CCRIF include the Pacific 
Catastrophe Risk Insurance Pilot (PCRIP) (2013) and the African Risk 
Capacity (ARC) (2014). Parametric insurance policies form the basis of 
existing risk pooling schemes (Pillay, 2016), reducing moral hazard yet 
increasing basis risk, with the potential for some losses to fail to satisfy the 
payout criteria. Where the CCRIF and PCRIP aim to provide immediate 
financial support in the event of an unexpected disaster, the ARC focuses on 
the occurrence of droughts. The gradual nature of this hazard requires 
alternative approaches for risk mitigation. Following Hurricanes Irma and 
Maria in September 2017, CCRIF SPC (redefined after an expansion of 
coverage into Central America in 2014) provided payouts of 29.6 million 
USD to six Caribbean counties in less than 15 days. In 2015, Cyclone Pam 
caused damages equivalent to more than 60% of GDP in Vanuatu in the 
South Pacific. Enabled through the country’s participation in the risk pooling 
scheme, 2 million USD (eight times the government’s emergency provision) 
were received from PCRAFI seven days after the disaster 4. 

In this study, we aim to analyse flood risk on a global scale. Using data from 
the Emergency Events Database (EM-DAT)  and following  a similar appro-
ach to Prettenthaler et al. (2017), we propose a risk pooling methodology 

3“Sovereign Catastrophe Risk Pools: World Bank Technical Contribution to the G20” 
TheWorldBank,2017,https://openknowledge.worldbank.org/handle/10986/28311 

4“What Makes Catastrophe Risk Pools Work: Lessons  for  Policymakers”, The  World
Bank, 2017, https://www.worldbank.org/en/news/feature/2017/11/14/ 
what-makes-catastrophe-risk-pools-work 

https://openknowledge.worldbank.org/handle/10986/28311
https://www.worldbank.org/en/news/feature/2017/11/14/what-makes-catastrophe-risk-pools-work
https://www.worldbank.org/en/news/feature/2017/11/14/what-makes-catastrophe-risk-pools-work
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at the worldwide and continental levels. Grouping regions by event frequency, 
we cluster countries based on estimations of their value-at-risk, minimising 
the total value-at-risk for each cluster. We first present the data set used in the 
analysis, the fitting of the heavy-tailed distributions to flood events and 
value-at-risk estimations for each country in Section 2. We will then describe 
the risk pooling and clustering methods in the global (Section 3) and 
continental (Section 4) cases, before concluding the paper in Section 5. 

2. Data and risk analysis

2.1 Data analysis 

Our analysis is conducted on flood records stored in the Emergency Events 
Database (EM-DAT), launched by the Centre for Research on the 
Epidemiology of Disasters (CRED) in 1988 5. This database has collected 
information on global catastrophic events since 1900. The data set is publicly 
available and well maintained, with frequent event updates. In this research, 
we focus on worldwide flood events dating back to as early as 1903, with the 
analysis carried out on data collected up to Aug 15, 2020. During the initial 
cleaning of the data, missing Consumer Price Indices (CPIs) were added to 
the data set using the Organization for Economic Cooperation and 
Development (OECD) Statistics CPIs Complete database6 and the 
International Monetary Fund (IMF) Country Indexes and Weight database 7. 
Once the complete set of CPIs were obtained, loss amounts adjusted for 
inflation were computed. All loss values used in the analysis are therefore 
adjusted for inflation and given in US dollars. 

The flood data spans a period of over 100 years, countries have therefore 
experienced political changes and geographical renaming. For the purpose of 
this study, we identified event locations at a granular level, observing where 
the floods took place and combining losses within the same geographical 
areas. This allowed us to merge events which occurred in various locations 
corresponding to a single geographical area. For instance, floods in ‘Germany 
Federal Republic’ were combined with those in ‘Germany’. For floods in the 
‘Soviet Union’, we looked further into event locations and found that flood 

5
https://www.emdat.be/ 

6
https://stats.oecd.org/ 

7
https://data.imf.org 
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occurred in what is now known as Georgia, whereas the rest occurred in the 
existing Russian territory. When preparing the dataset, we first filtered out 
countries with no more than 5 flood incidences recorded since 1903, leaving 70 
countries for the analysis. We then aggregated the incurred losses per year for 
each country. Reserves are usually decided on a yearly basis at an aggregated 
level, we therefore fit the annual losses for each country and calculate their 
value-at-risk (VaR). 

Heavy-tailed distributions are often used to model extreme or rare events, 
e.g. earthquakes, tsunamis, hurricanes and floods, amongst others. In this
analysis, we normalise the global loss data for the 70 countries or territories by
their overall gross domestic product (GDP), adjusting for inflation, and fit
the normalised data to a number of heavy-tailed distributions (see
Appendix). We adopt a similar method to that used in Prettenthaler et al.
(2017) and divide the countries into two groups. Countries in the first group
generally have more frequent floods and thus more observed data to carry
out the fitting. Countries with no more than 10 floods over the past century
are assigned to the second group. A detailed list of the countries in each
group is presented in figure 1.

Figure 1. Groups 1 & 2, Determined by the Number of Data Points per 
Country. 
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For countries in the first group, rather than applying maximum likelihood 
estimation (MLE), we adopt maximum goodness-of-fit estimation (MGE). 
MGE is also referred to as the minimum distance estimation method, as it 
seeks to minimise the discrepancy between the reference cumulative 
distribution function (CDF) F and the empirical distribution function (EDF) 
Fn (Luceño, 2006).  An advantage of using this approach is that we have 
flexibility in choosing the appropriate distance metrics. The distance can be 
measured using statistics such as the Kolmogorov-Smirnov (KS) statistic 

or statistics resulting from 

for different weight functions ψ(x). When ψ(x) = 1, the statistic 𝑊𝑊𝑛𝑛
2 is  the 

Cramér-von  Mises  statistic  nω2.   When  ψ(x)  =  1/x(1 - x),  the statistic 𝑊𝑊𝑛𝑛
2 

is the Anderson-Darling statistic 𝐴𝐴𝑛𝑛2  , extensively studied by Anderson and 
Darling (1952), Anderson and Darling (1954). The statistic 𝐴𝐴𝑛𝑛2  gives heavy 
weight to the tails and should be powerful against alternatives in which the 
true distribution and the reference distribution disagree near the tails of F. 

2.2 Risk analysis 

Value-at-risk (VaR) and expected shortfall (ES) are common risk measures. 
In this analysis, VaR is calculated after making the appropriate distribution 
choice for each country. The VaR at level β is defined as the solution to the 
following equation for x 

Expected shortfall is the most prominent alternative to VaR, and  is more 
sensitive to the shape of the tail of the loss distribution. It is defined as the 
following conditional expectation 

ESβ(X) = E [X|X > VaRβ(X)] , 

where β is the confidence level. 
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Since we will be working with VaR for measuring catastrophe risks, the 
right-tail goodness-of-fit plays a key role. As suggested in Chernobai, 
Rachev and Fabozzi (2005) we implement the MGE with a modification of 
the Anderson-Darling statistic proposed by Sinclair, Spurr and Ahmad 
(1990) which emphasizes the discrepancies between the empirical 
distribution Fn and F in the right tail. This modified statistic is also known as 
the ‘right-tail Anderson-Darling 2nd order’ statistic and is defined as 

The ‘best’ choice of distribution is based on the results of the modified 
Anderson-Darling test statistics. The above quadratic version 𝐴𝐴𝐴𝐴𝑛𝑛2 adds more 
weight to the right tails while the left-tail fitting is unimportant in our 
context. This could possibly lead to an overestimation of risks based on 
historical observations, yet such extra caution might be necessary due to the 
recent acceleration in climate change, particularly for countries with more 
frequent floods. Recall that countries in the second group have few data 
points. Applying other fitting approaches leads to very large biases. We 
therefore employ quantile matching estimation (QME) on these data. This 
method matches the empirical and theoretical quantiles at pre-specified levels. 
For our purpose, the 80% and 99.5% quantiles are matched for 2-parameter 
distributions, whereas the median was also added for 3-parameter 
distributions. 

Fittings were attempted on 5 candidate parametric distributions, the log-
normal distribution, the Weibull distribution, the Burr distribution, the Pareto 
distribution and the truncated Pareto distribution. Note that the support of all 
these random variables is defined on the positive real line, which meets our 
needs of modelling incurred losses. The final distribution for a country was 
chosen based on the Anderson-Darling goodness-of-fit test statistic. We built 
upon the fitting tools from the R package fitdistrplus (Delignette-Muller et al., 
2015) and actuar (Dutang et al., 2008) and automated the fitting and 
distribution selection process for all 70 countries. We arrange the countries 
by continent, Africa, the Americas, Asia, Europe and Oceania, and we 
specify which group each country belongs to depending on the number of 
data points, as in figure 1.  Fitting results in Table  1 - Table  5 contain 
information on the chosen parametric distribution, the VaR and ES derived 
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from the fitted distribution (in million US dollars), GDP in 2019 (in million 

US dollars), and VaR as a percentage of GDP for each country. Several 
fitting plots in log-log scale are also presented alongside the tables which 
exhibit clear fitted curves particularly in the right tails. Note that we include 
the 99.5% VaR and the 99% Expected Shortfall (ES) for each country’s 
flood risk in Tables 1 - 5. 

Table 1. African Countries 
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Table 2. Asian Countries 
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Table 3. American Countries 

Table 4. European Countries 
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Figure 2: Log-log plots for fitting annual flood loss data by country. Black 
dots are observed values. Dashed curves are fitted parametric distributions. 

Table 5.  Oceanian Countries 

In figure 1, we present the survival probabilities and flood losses in log-log 
scale for clearer visualization of the tail fittings. Due to the chosen distance 
metric, i.e., AD2R, the tail behaviours are carefully captured. 
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3. Global risk pooling and clustering

Sums of the VaRs of individual countries in Table 1 - Table 5 represent the 
overall amount of capital that would be needed at the 99.5% safety level for 
each continent, in the case that each country deals with flood risks 
individually. Apart from Oceania, this amount is much larger than the VaR 
calculated on the basis of aggregated loss data for each continent, which 
incorporates the dependence structure between individual countries. Hence, 
there is a strong diversification potential for pooling flood risk across 
countries within each continent as well as cross- continent. 

The main algorithm used to cluster the above 70 countries clusters according 
to flood risk in the form of annual aggregate losses. When a cluster is 
formed, we aggregate losses from all member states in this cluster by the 
same calendar year, as if we were treating the cluster as a ‘country’ with 
losses to be the sums of all its ‘regions’. Our aim is to minimise the total 
VaR summed from all clusters. Let us represent the VaR for a number of 
clusters G as 

where Xi denotes the annual aggregate flood loss for country i and Ng is the 
number of countries in a particular cluster g. Note that 

and in fact, since subadditivity does not always holds true for VaR, we 
cannot guarantee that the objective function always decreases by adding one 
country into the risk pool. ES is not chosen as the risk measure in this 
analysis since some ES values in Tables 1 - 5 are equal to infinity. 

Unlike in Prettenthaler et al. (2017), our sample size of 70 is large. 
Investigating all possible clusters would be computationally infeasible. We 
therefore work with a heuristic algorithm to approach optimality. Borrowing 
the idea used in the hierarchical clustering algorithm, we propose our own 
algorithm with a number of modifications. The hierarchical clustering 
algorithm is described as follows. Its endpoint is a set of clusters, where all 
clusters are distinct from each other, and the objects within each cluster are 
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broadly similar to one other. This algorithm is based on a certain measure of 
‘distance’ between objects and in fact, our main adaptation lies in the distance 
metric. Under our setting, the measure of ‘dissimilarities’ between two 
countries/clusters will be the amount of reduction in risk (measured by 
99.5% VaR) due to the clustering. We fuse countries with the largest 
reduction in VaR at each iteration. 

From the global perspective, we will carry out the clustering separately for 
the two groups of countries mentioned earlier. Since different fitting 
approaches were applied to the two groups, we will also modify the 
clustering algorithms correspondingly. For clarity and ease of flow, we will 
use the following terminologies throughout the remainder of the paper.
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3.1 Clustering algorithm 

We adopt empirical VaRs instead of theoretical ones for Group 2 due to the 
unavailability of a sufficient number of historical data points. Consequently, 
we skip the whole fitting procedure, saving a significant amount of 
computing time. Note that the terminologies used in this algorithm are 
analogous to the ones displayed in the table shown earlier. 
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The algorithm allows us to find ways of dramatically reducing Total VaRs at 
the beginning of the clustering, gradually reaching a point where the Total 
(Empirical) VaRs do not exhibit substantial reductions. This could be 
reflected in the dendrograms presented below (see Figure 3 and 4). 

3.2 Clustering results and analysis 

The dendrograms for both groups are displayed in Figures 3 and 4. A 
dendrogram provides a detailed summary of the clustering process. Since this is 
a hierarchical approach, we did not have to choose an optimal number of 
clusters throughout the algorithm. Instead, we could visualise the process, with 
the flexibility to determine the number of clusters from the dendrogram (see 
Figures 3 and 4). Note that normally in dendrograms, the vertical axis 
denotes the level of dissimilarity at which each cluster is formed. Under our 
setting, the amount of reduction in VaR after combining countries is 
analagous to dissimilarity. However, the larger the reduction, the lower the 
‘dissimilarity’, and thus the earlier certain countries are fused. In this way, 
the dendrograms here intuitively present a hierarchical structure with 
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countries fused at lower levels to be clustered first. The y-axis values, 
however, do not have as straightforward a meaning as the Euclidean distance 
in traditional dendrograms, yet they may still serve as a visual aid for the 
identification of clusters. The two groups clearly differ in the scale of their 
y-axes, in line with the reasoning behind their initial separation. Generally 
speaking, countries pooled together at the mini- mum fusing level are those 
with the greatest reduction from Sum VaR to Aggregate VaR. From a risk 
management perspective, this is when risk pooling is most effective. Pooling 
can be applied to earlier established clusters as well as singletons. We seek 
for paths of maximisation at each iteration, which could heuristically lead us 
to a global minimum while we iterate through the clustering process. 

Horizontal lines added to the dengrograms represent potential cuts at 
different fusing levels. Note that countries clustered earlier in the procedure are 
purposely placed at the centre of the graphs. For instance, for countries in 
Group 1, a cut at 1 million results in just one cluster consisting of 
Colombia and Germany. As we move along the y-axis, more clusters are 
formed. Line positions are arbitrarily set for the purpose of illustration. The 
benefit of this hierarchical clustering is that policymakers have the freedom 

Figure 3: Clustering in Group 1. 
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to choose any fusing level at their own preference, with clusters formed 
accordingly. In practice, pooling together flood risk from different countries 
may not be as straightforward as simply combining their loss amounts. The 
process involves many administrative procedures and is dependent on the 
regulations and rules specified in each insurance policy. Our dendrograms 
offer such flexibility to the insurers. 

Summarising our initial findings, we observe that the Total VaR global 
minimum could be achieved when almost all countries are pooled together, 
however its value does not reduce further after many iterations. This implies 
that a fewer number of countries could be pooled together in order to 
approach a value of Total VaR that is sufficiently close to its minimum. In 
regard to practical considerations, when the increase in other expenses 
overtakes the drop in VaR, it may no longer be worth pooling additional 
countries. 

Figure 4: Clustering in Group 2. 
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Nevertheless, our study facilitates the placing of the final cluster number 
decision into the hands of risk managers. Our clustering results demonstrated 
in the dengrograms could be used as an ordered reference list for pooling risks. 
For countries in Group 1, one might consider merging flood risks from 
Columbia, Germany, Thailand, the United Kingdom, China, Italy and South 
Korea, as they are clustered earlier in the process. We take these countries as 
an illustration. Suppose we choose a cut at around 1,650,000 m$. This cut 
leads to two clusters, presented in Table 6. In the table, one can also compare 
the Aggregate VaR to the Sum VaR for such cluster. 

Table 6. An Illustrative Example with a Cut of 1,650,000 m$. 

The clustering has indeed led to a significant reduction of risks. Recall that 
we used an estimation method which places extensive weight on the tails and 
could very likely lead to overestimation. This estimation was not only 
applied to individual losses, but also to the clustered data. The following 
table summarises the distributions chosen for individual countries and 
clusters, respectively. 

Table 7. An Illustrative Example Continued - Best fitted distributions 
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Further clusters can be identified using the dendrograms in a similar way, 
including those in Group 2. For instance, a cut at level 15,000 m$ would 
result in two clusters: Peru pooled together with Venezuela, and Austria 
merged with Poland. 

4. Risk pooling and clustering by continent

In this section, we use similar techniques to pool and cluster countries within 
each continent. Since there are only three countries considered in Oceania, 
we place all of them in one group for the following analysis. We divide 
Africa, the Americas and Europe into two groups, Group A and B, and Asia 
into three groups, Group A, B and C, depending on the number of data 
points. From the continental perspective, as in Prettenthaler et al. (2017) we 
are able to identify the clusters which give the smallest Total (Empirical) 
VaRs for each continent by investigating all combinations of clusters, since 
there are relatively fewer countries in each continent after grouping. 
Algorithms for clustering within the continent are the same as in Section 3.1. 

Africa 

For countries in Africa Group A, the results of the algorithm are presented in 
Table 8, proposing the creation of three clusters to reduce the flood loss risk. 

Table 8.  Three clusters for Africa Group A 

There are two countries in Africa Group B, Niger and Tunisia. The Sum 
Empirical VaR, 893.05 m$, is smaller than the Aggregate Empirical VaR, 
2326.23$, suggesting no clustering should be used within this group.
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Asia 

Asia has the largest number of countries among all continents in this analysis 
and thus is divided into three groups. We consider three clusters for each Asian 
group (see Tables 9 to 11). 

Table 9. Three clusters for Asia Group A 

Table 10. Three clusters for Asia Group B 
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Table 11. Three clusters for Asia Group C 

The Americas 

We present only those results corresponding to the selection of three clusters 
in each group for the Americas. Tables 12 and 13 show that the Aggregate 
(Empirical) VaR reduces significantly after clustering. 

Table 12. Three clusters for the Americas Group A 

Table 13. Three clusters for the Americas Group B 
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Europe 

We present the results for two and three clusters for Europe Group A. 

Table 14. Two clusters for Europe Group A 

Table 15. Three clusters for Europe Group A 

Three clusters are chosen for Europe Group B and the results are given in 
table 16. 

Table 16. Three clusters for Europe Group B 

Oceania 

When considering Oceania, we place Fiji and New Zealand in one cluster 
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and Australia in another, thus, Total VaR for the whole continent is 18,216.52 
m$, slightly smaller than the Sum VaR in Table 5. Total VaR for the whole of 
Oceania is however 20,742 m$ (see Table 5) if all three countries are in the 
same cluster. 

Table 17. Two Clusters for Oceania 

5. Conclusion

As in Prettenthaler et al. (2017), we advocate the pooling of risks via joint 
insurance products across countries or regions, sharing the risk of floods in a 
reciprocal manner. We have exemplified the financial benefits for such risk 
sharing, both per continent and at the global level, by calculating the overall 
values-at-risk with or without pooling. Where our analysis uses a readily 
available data set, spanning flood records from all over the world from 1903 
to 2020, and Prettenthaler et al. (2017) use European flood data from 1980 
to 2014 for a European risk pooling analysis, the message is the same. We 
simply want to champion this cooperative risk management solution, which, 
alongside parametric insurance and microinsurance, can help everyone, but 
especially less developed socio-economic environments to be (more) shielded 
financially from the aftermath of natural disasters. 
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8. Appendix

Heavy-tailed distributions used in this analysis: 

1. The log-normal distribution has cumulative distribution
function (cdf)

where Φ is the cdf of a standard normal distribution. 

2. The Weibull distribution has cdf

with parameters τ , α > 0. 

3. The Burr distribution has cdf

with parameters c, k > 0. 

4. The Pareto distribution has cdf

with two parameters α, θ > 0. 

5. The truncated Pareto distribution (Beirlant, Alves, and Gomes,
2016). has cdf

where the upper bound T can be estimated from the data. 
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