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Abstract 

The Entities are exposed to disruptive events derived from operational risk. 
To provide coverage against this risk, an advanced model has been 
developed to quantify the Economic Capital required to cover losses due to 
the said risk. The model is based on the Loss Distribution Approach (LDA), 
the Monte Carlo simulation and the Value at Risk measure, using only 
historical internal loss data. The model uses a “top-down” approach which 
consists in the calculation of the total Capital in the first instance and later 
the disaggregation of it among the Basel Cells. The model proves to be 
robust by capturing the Entity's true risk profile, solving the problem of data 
scarcity and achieving the maximum level of ex post granularity. 
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Resumen 
 
Las Entidades están expuestas a eventos disruptivos derivados del riesgo 
operacional. Para proporcionar una cobertura frente a este riesgo, se ha 
desarrollado un modelo avanzado que permite cuantificar el Capital 
Económico necesario para cubrir las pérdidas por dicho riesgo. El modelo se 
basa en el enfoque de Distribución de Pérdidas Agregadas (LDA), en la 
simulación de Monte Carlo y en la medida Valor en Riesgo, utilizando 
únicamente datos de pérdida interna histórica. El modelo utiliza un enfoque 
“top-down” que consiste en calcular el Capital total en primera instancia y 
posteriormente desagregarlo entre las Celdas de Basilea. El modelo 
demuestra ser robusto capturando el verdadero perfil de riesgo de la Entidad, 
resolviendo el problema de escasez de datos y logrando el máximo nivel de 
granularidad a posteriori. 
 
Palabras clave: Riesgo Operacional, Enfoque de Distribución de Pérdidas 
Agregadas, Capital en Riesgo, Apetito de Riesgo, Valor en Riesgo 
 
 
 

1. Introduction 
 
Banks are exposed to disruptive events such as failures in processes, 
personnel, incidents that damage or make the bank's facilities, 
telecommunications or information technology infrastructures inaccessible, 
or external events such as terrorist attacks and natural disasters that affect the 
human resources. All of these events are attributable to operational risk and 
can cause significant financial losses for the bank, as well as broader 
disruptions to the financial system (Basel Committee on Banking 
Supervision, 2011). 
 
To provide coverage against this operational risk, an advanced model has 
been developed to quantify the Economic Capital required to cover losses 
due to said risk and the Risk Appetite for the coming year using a “top-
down” approach. The model is based on the Loss Distribution Approach 
(LDA), the Monte Carlo simulation and the Value at Risk measure.  
 
This Paper provides a summary of the Master's Thesis of González (2020). 
In the last, the Basel II framework has been addressed and the advanced 
model is described in depth. 
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This Paper is structured in seven sections. An introduction is made in this 
section, providing the scientific contribution of the model, mentioning the 
approach used and indicating the main underlying assumptions. Section 2 
indicates the procedure to obtain the Capital at Risk and the Risk Appetite 
due to operational risk for next year. Section 3 presents the methodology to 
model Severity and Frequency, estimate the Aggregate Loss Distribution and 
obtain the mentioned risk measures. Section 4 describes the data sample 
used and a modelling study is carried out. In section 5, the implementation of 
the model is put into practice. In section 6, an evaluation of the results is 
carried out. Finally, section 7 contains the most relevant conclusions and the 
implications of the model. 
 
The scientific contribution of this Paper resides in the fact that the proposed 
model provides solutions to the problems that present the current 
methodology used by prestigious large banks which is based on a bottom-up 
approach. This is detailed in Table 1.  
 
Table 1. Solutions of the present model, which uses an advanced top-down 
approach, to the advanced bottom-up approach currently used by prestigious large 
banks. 

Problems of the advanced bottom-up 
approach Solutions of the proposed model 

The external loss data is of a totally 
different nature since they belong to 
other financial institutions, so it does not 
reflect the risk profile of the Entity in 
question and the scenarios are invented 
situations, which implies that both the 
Severity and Frequency data are 
unreliable, making it unclear to what 
extent they feed or contaminate the 
sample. 

It will be based solely on internal loss 
data of the Entity, relegating the use of 
external data and scenarios, in order to 
better capture its risk profile. Internal 
loss data is the most relevant entry, as it 
is clearly linked to the Entity's current 
business activities, technological 
processes and risk management 
procedures.  

The ex-ante segmentation by Risk Unit 
is not consistent because it makes the 
size of some data samples insufficient 
for a distribution to be fitted without 
falling into overfitting problems or the 
like, giving rise to unreliable estimates. 

Segmentation will not be carried out ex-
ante. On the contrary, the internal loss 
data will be modelled jointly to obtain 
the Capital at Risk and Risk Appetite in 
the first instance and afterwards these 
measures will be disaggregated among 
the Cells of Basel.  

Source: Own elaboration 
 
Therefore, as seen in Table 1, the model captures the true risk profile of the 
entity by relegating the use of external data and scenarios, solving the 
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problem of data scarcity by modelling jointly all data and achieving the 
maximum level of ex post granularity by making a segmentation ex-post.  
 
Being the investigation problem diagnosed, the approach used for the 
development of the present model is a top-down approach, which consists of 
the modelling of all the historical internal loss data jointly in order to obtain 
the total Capital at Risk and total Risk Appetite at the entity level in the first 
instance, and afterwards the disaggregation of these measures among the 
Basel Cells presented by the Entity through an empirical approach, being 
each Cell a combination of a Business Line and a Risk Type. This 
categorization forms an array with 56 data Cells, showed in Figure 1, and 
the eight Business Lines (BL) and seven Risk Types (RT) are indicated in 
Table 2. 
 

 
Figure 1. Basel Cells of the entity. Source: Own elaboration 

 
Table 2. Business Lines and Risk Types of Basel II 

Business Line (BL) Risk Type (RT) 
BL1. Corporate Finance 
BL2. Trading and Sales 
BL3. Retail Banking 
BL4. Commercial Banking 
BL5. Payment and Settlement 
BL6. Agency Services 
BL7. Asset Management 
BL8. Retail Brokerage 

RT1. Internal Fraud 
RT2. External Fraud 
RT3. Employment Practices and Workplace Safety 
RT4. Clients, Products and Business Practice 
RT5. Damage to Physical Assets 
RT6. Business Disruption and System Failure 
RT7. Execution, Delivery and Process 
Management 

Source: Own elaboration 

BL1_RT1 BL1_RT2 BL1_RT3 BL1_RT4 BL1_RT5 BL1_RT6 BL1_RT7 

BL2_RT1 BL2_RT2 BL2_RT3 BL2_RT4 BL2_RT5 BL2_RT6 BL2_RT7 

BL3_RT1 BL3_RT2 BL3_RT3 BL3_RT4 BL3_RT5 BL3_RT6 BL3_RT7 

BL4_RT1 BL4_RT2 BL4_RT3 BL4_RT4 BL4_RT5 BL4_RT6 BL4_RT7 

BL5_RT1 BL5_RT2 BL5_RT3 BL5_RT4 BL5_RT5 BL5_RT6 BL5_RT7 

BL6_RT1 BL6_RT2 BL6_RT3 BL6_RT4 BL6_RT5 BL6_RT6 BL6_RT7 

BL7_RT1 BL7_RT2 BL7_RT3 BL7_RT4 BL7_RT5 BL7_RT6 BL7_RT7 

BL8_RT1 BL8_RT2 BL8_RT3 BL8_RT4 BL8_RT5 BL8_RT6 BL8_RT7 
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The main underlying assumptions of the model are two: i) Frequency and 
Severity are two independent sources of randomness, and ii) the operational 
losses are considered independent and identically distributed (Frachot, 
Georges & Roncalli, 2001). 
 
The model is based on the equation (1.1) that relates the total loss, the 
Severity and the Frequency, which defines the total loss as a random sum of 
the losses: 
 

𝑆𝑆 = 𝑿𝑿1 + 𝑿𝑿2 + ⋯+ 𝑿𝑿𝑁𝑁 =  � 𝑿𝑿𝑛𝑛
𝑵𝑵

𝑛𝑛=0
 

(1.1) 

 
where 

− 𝑵𝑵: random variable representing the number of risk events in the 
time interval [0, t] (Frequency of events); 

− 𝑿𝑿𝑛𝑛: random variable that expresses the amount of loss for a certain 
event (Severity of the loss). 

 
The model proves to be robust by capturing the Entity's true risk profile, 
solving the problem of data scarcity, achieving the maximum level of ex post 
granularity and providing a Capital figure with a notable degree of 
conservatism while improving the standard formula. 
 
 

2. Model Design 

This section details the procedure to be followed to obtain the Capital at 
Risk, Risk Appetite, Expected Loss and Unexpected Loss due to operational 
risk for next year. A flow chart is provided in Figure 2. 
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Figure 2. Flow chart for obtaining the risk measures (Capital at Risk, Risk Appetite, 
Expected Loss and Unexpected Loss). Own elaboration 
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3. Methodology 
 

In this section, the methodology is explained, which follows the steps in 
Figure 1. For more detail, the methodology is widely described in the 
Master’s Thesis of González (2020). 
 
3.1.  Collection, analysis and processing of internal loss data 
 
The process begins with the collection and processing of the entity's 
historical internal loss data. This constitutes an essential activity to achieve 
the development and functioning of a credible operational risk measurement 
system since this makes it possible to link the risk estimates with its actual 
loss experience. 
 
Internal loss data is the most relevant entry, as it is clearly linked to the 
bank's current business activities, technology processes, and risk 
management procedures. They allow to reflect the risk profile of the entity. 
Therefore, external data and scenarios have not been considered (see Table 1 
for the justification). 
 
For this reason, all data must be analysed and processed with the following 
associated information: business line, risk type, country, currency, 
occurrence date, detection date, accounting date, gross loss, recovery, 
provision and net loss. 
 
The date used is the first accounting date. The use of the first accounting 
date, instead of the date of occurrence or the detection date, is considered 
more appropriate because it allows for better reconciliation and validation 
and is consistent with the principle of prudence. 
 
The type of loss used is the net loss, defined as the loss after all recoveries, 
except insurance. The use of net losses, rather than gross losses, is 
considered more appropriate because they collect relevant information 
regarding the operational risk framework, and furthermore, because gross 
losses would result in an artificially high Capital endowment. 
 
Under Basel II, internally generated operational risk measures used for 
Economic Capital and Risk Appetite purposes should be based on a 
minimum observation period of five years of the most recent internal loss 
data and a maximum of 10 years is recommended. The time window of the 
data used for the proposed model is 8.5 years for greater reliability, 
comprising from 1st of January of 2011 to 30th of June of 2019. 



Estefanía González Carbonell 

188 

 
To make the losses comparable during the period of time considered, it is 
necessary to make an inflation adjustment based on the Consumer Price 
Index (CPI). The inflation-adjusted losses are obtained using the following 
formula in (3.1): 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
∗ = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚/𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦∗

𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 

(3.1) 

where 
− 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦: original loss accounted for on the date mm / yyyy; 
− 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦: CPI of the corresponding date; 
− 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦∗: reference value of the IPC index, mm / yyyy * is set 

as 06/2019. 
 

3.2.  Severity modelling 
 

Once the data is processed, the next step is the modelling of Severity. 
 
The Severity Distribution of all loss data is configured, fitting various 
distributions and checking their goodness of fit to choose the best one. If 
none provide a good fit, a threshold would be imposed and various 
distributions would be fitted to the body and tail, checking their goodness of 
fit to choose the best one. If the goodness of fit fails again, mixtures will be 
chosen and their goodness of fit will be checked to choose the best one. If it 
failed again, the empirical distribution would be fitted finally. 
 
In the following subsections, the Severity Distribution is defined, the 
calibration process is explained, the principles for imposing thresholds are 
established and the Goodness of Fit Tests are detailed. 
 
Definition of the Severity Distribution 
 
Severity is defined as the monetary amount of the loss associated with a loss 
event. 
 
The probability distribution function of Severity is expressed as: 
 

𝐹𝐹(𝑥𝑥) = 𝐶𝐶(𝑿𝑿 ≤ 𝑥𝑥) (3.2) 
 
where 𝑿𝑿 is a random variable that represents the Severity. 
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The Severity Distribution is continuous, which can range from a simple 
distribution to mixtures of two components. The choice of it will be based on 
the one that best fits the observed historical data and best describes the 
underlying pattern of the loss data, emphasizing that the fit in the tail is 
appropriate, since this is what the Capital at Risk and Risk Appetite 
estimates are based, and this is why, when necessary, the adjusted 
distribution could be divided into two parts, the body and the tail. 
 
Calibration of the Severity distribution 
 
For the calibration of the Severity Distribution, that is, the estimation of its 
parameters, the Maximum Likelihood method is used, relying on authors 
such as Tan and Chang (1972), Holgersson and Jorner (1978) and Day 
(1969). These authors defend the Maximum Likelihood method against other 
point estimation methods such as the Moments Method, Bayesian 
Estimators, Least Squares, the Minimum Chi-Square estimation and graphic 
procedures. 
 
All events are assumed to be independent random data from the same 
distribution. 
 
Principles for imposing thresholds 
 
Principles for imposing thresholds are defined here. Thresholds will be 
needed in case it is not possible to fit a single distribution since the use of 
them introduces an additional parameter to the fit. In such a case, the choice 
of it is very important. In this sense, it is convenient to distinguish between 
the body threshold and the tail threshold.  
 

i. Body threshold. It is defined by Ferreras Salagre (2008) as “the 
minimum amount of the operational event from which the entity 
begins to collect or capture its data”. It may be applied to those 
losses that do not have a material impact on the Capital calculations. 
If applied, the distribution function will be conditioned by the 
mentioned threshold. 

 
ii. Tail threshold. It is defined by Ferreras Salagre (2008) as “the 

threshold that the entity uses to model its data and which, logically, 
it must be equal to or greater than that of the body”. It divides the 
losses in the body and tail of the distribution. To determine the 
threshold, the decision is based on imposing that threshold that 
maximizes the number of events in the tail. The rationale behind this 
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criterion is to cover as much data as possible to provide more 
information for Goodness of Fit tests. 

 
Goodness of Fit tests for Severity Distribution 
 
Goodness-of-Fit tests determine if the fit of the selected distribution is 
appropriate for the data. Refer for more detail of the Goodness of Fit tests to 
the Master’s Thesis of González (2020).  
 
The tests used for Severity, as it is continuous, are the Kolmogorov-Smirnov 
(KS) and Anderson-Darling (AD) tests. The hypotheses for these tests are: 
 

− H0: Data follow specified distribution; 
− H1: Data does not follow specified distribution. 

 
The result of each one of these Goodness of Fit tests is a p-value and the 
significance level chosen a priori is α = 0.01. A p-value greater than or equal 
to 0.01 will allow not rejecting the null hypothesis that the data follow the 
specified distribution and a p-value less than 0.01 will reject the null 
hypothesis and conclude that the data does not come from the distribution in 
question. 
 
These two tests are considered conclusive for choosing the model, however 
Anderson-Darling Test is considered more robust because the sample size 
used is large and because the Capital at Risk and Risk Appetite estimates are 
based on the tail values.  
 
In addition to these tests, the information criterions AIC and BIC are also 
calculated to provide some more information. The preferable model will be 
the one with the lowest AIC and BIC values. 
 
Finally, it must be verified that the probability distribution selected in the KS 
and AD provides a good fit in the tail. This is a critical point because, as 
mentioned, the estimates of Capital at Risk and Risk Appetite are based on 
the tail values due to the use of the Value at Risk metric. This in reinforced 
by Carrillo and Suárez (2006), who argue that more than 90% of the Capital 
is due to a very reduced number of events that occur in the tail of the 
distribution. 

 
 
 
 



Advanced model of calculation of Capital for operational risk… 

191 

3.3.  Frequency modelling 
 

Once the Severity Distribution is configured, the Frequency Distribution of 
all the loss data is proceeded to be configured. Again, various distributions 
would be fitted and their goodness of fit would be checked to choose the best 
one. If any of them provide a good fit, the empirical distribution would be 
fitted. 
 
In the following subsections, the Frequency Distribution is defined, the 
calibration process is explained and the Goodness of Fit Test is detailed. 
 
Definition of Frequency Distribution 
 
Frequency is defined as the total number of operational risk events that lead 
to losses in a given period of time. Using this number of incidents, we fit a 
distribution to model the Frequencies. Thus, the Frequency Distribution 
describes the probability that a certain number of events will occur within a 
certain period of time. Note that the Frequency Distribution is discrete.  
 
Since the Economic Capital is calculated on the basis of a time horizon of 
one year, the Frequency Distribution must represent the number of losses in 
a year. However, fitting a distribution for the random variable of Frequency 
requires a reasonably large amount of historical data, more than is available 
for this model. This drawback can be avoided by assuming that the 
frequencies of weekly loss are independent. These weekly frequencies can 
be used to fit the distributions, thus expanding the amount of data available 
and allowing for reliable fits. Therefore, the proposed model will use weekly 
frequency. 
 
The loss Frequency Distribution function is expressed as: 
 

𝐶𝐶(𝑛𝑛) = 𝐶𝐶(𝑵𝑵 = 𝑛𝑛) = �𝑝𝑝 (𝑘𝑘)
𝑛𝑛

𝑘𝑘=0

 (3.3) 

 
where 𝑵𝑵 is a random variable that represents the number of events that have 
occurred in a time horizon, whose probability function is 𝑝𝑝. 
 
Calibration of Frequency Distribution 
 
The Frequency Distribution is calibrated by the Maximum Likelihood 
method. 
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In the event that thresholds have been imposed on the Severity Distribution, 
the Frequency Distribution must be scaled taking into account the period of 
the internal data and the thresholds imposed on Severity using the following 
factor: 

𝑓𝑓 =  
365
𝑑𝑑

 

∑ 𝑤𝑤𝑖𝑖
�1 −  𝑐𝑐𝑑𝑑𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠

𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙(α)� 
𝑛𝑛
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

 
(3.4) 

 
where: 

− 𝑑𝑑: Frequency aggregation time unit (in days); 
− 𝑐𝑐𝑑𝑑𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠

𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙: limit to the left of the cumulative density function of the 
Severity Distribution; 

− {𝑤𝑤𝑖𝑖} ni = 1: internal event weights for Severity adjustment; 
− α: body fit threshold referring to internal events used for Severity fit. 
 

Goodness of Fit test for Frequency Distribution 
 
The Goodness of Fit test used for Frequency, as it is discrete, is the 
Anderson-Darling (AD) test. 
 
3.4.  Empirical cumulative distribution function 
 
This section describes the empirical cumulative distribution function, which 
will be applied to Severity and/or Frequency in the following cases: 
 

i. when all possible distributions have already been tested, considering 
simple distributions, the application of thresholds and even mixtures 
of two components, and none provide an appropriate fit according to 
Goodness of Fit tests; 
 

ii. for the allocation process of total risk measures (at entity level) to 
each of the Cells. This allocation is based on the proportion of their 
empirical risk measure with respect to the corresponding total risk 
measure (explained in sec. 3.8. ). 

 
An empirical cumulative distribution function (ECDF) is a nonparametric 
estimator of the underlying cumulative distribution function of a random 
variable. It is known as a “step” function that jumps 1

𝑛𝑛
 at each step in a set of 

n observations, assigning a probability of 1
𝑛𝑛
 to each observation in the 
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sample. Therefore, the ECDF is a discrete cumulative distribution function 
that creates an exact match to the distribution of the data. 
 
Let X1, …, Xn a random variable i.i.d. in ℝ with d.f.c. F(x), the ECDF, 
denoted by 𝐹𝐹�𝑛𝑛, is defined as: 
 

𝐹𝐹�𝑛𝑛(𝑡𝑡) = 𝐶𝐶�𝑛𝑛(𝑋𝑋 ≤ 𝑡𝑡) =
# 𝑙𝑙𝑜𝑜𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑙𝑙𝑛𝑛𝑙𝑙 ≤ 𝑡𝑡

𝑛𝑛
=

1
𝑛𝑛
�𝕝𝕝{𝑥𝑥𝑖𝑖≤𝑙𝑙}

𝑛𝑛

𝑖𝑖=1

 
(3.5) 

where 𝕝𝕝{.} is the indicator function given by: 

𝕝𝕝{𝑥𝑥𝑖𝑖≤𝑥𝑥} = �1         𝑙𝑙𝑜𝑜 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥   
0         𝑙𝑙𝑜𝑜 𝑥𝑥𝑖𝑖 > 𝑥𝑥    

(3.6) 

 
3.5.  Aggregate Loss Distribution 
 
Once a distribution has been fit to Severity and another distribution to 
Frequency, the Aggregate Loss Distribution 𝐺𝐺𝑆𝑆(𝑥𝑥) in (3.8) is generated.  
 
The aggregate loss corresponding to a temporary unit (taken as a week) is 
calculated as the sum of random losses corresponding to a temporary unit, 
whose formula is in (3.7): 
 

𝑆𝑆 = 𝑿𝑿1 + 𝑿𝑿2 + ⋯+ 𝑿𝑿𝑁𝑁 =  � 𝑿𝑿𝑛𝑛
𝑵𝑵

𝑛𝑛=0
 (3.7) 

 
In order to obtain the Aggregate Loss Distribution, it is done the convolution 
of the random variable of Severity with itself a number of times given by the 
random variable of Frequency. 
 
Let 𝐺𝐺𝑆𝑆(𝑥𝑥) the distribution function of 𝜗𝜗, 𝐺𝐺𝑆𝑆(𝑥𝑥), is then the aggregate 
distribution which is obtained by: 
 

𝐺𝐺𝑆𝑆(𝑥𝑥) = ��𝐶𝐶(𝑛𝑛) 𝐹𝐹𝑋𝑋𝑛𝑛
∗(𝑥𝑥)

∞

𝑛𝑛=1

      𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥 > 0

𝐶𝐶(0)                             𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥 = 0

 

(3.8) 

where 
 

− 𝐶𝐶(𝑛𝑛) is the Frequency Distribution function, the formula of which 
comes in (3.3); 
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−  𝐹𝐹𝑋𝑋𝑛𝑛
∗(𝑥𝑥) is n-times the convolution of F with itself. And 𝐹𝐹𝑋𝑋(𝑥𝑥) is the 

density function of X that expresses the probability that the 
aggregate Severity of n losses is x. To better understand 
convolution: 

𝐹𝐹1∗ = 𝐹𝐹 (3.9) 
𝐹𝐹𝑛𝑛∗ = 𝐹𝐹(𝑛𝑛−1) 𝐹𝐹 (3.10) 

 
Emphasize that the random variables X are implicitly assumed to be 
independently distributed and independent of the number of events. 
 
Figure 3 shows a representation of the estimation process of the Aggregate 
Loss Distribution. 

 
Figure 3. Representation of the estimation process of the Aggregate Loss 
Distribution. Own elaboration 
 

There is no analytical expression to obtain the Aggregate Loss Distribution 
𝐺𝐺𝑆𝑆(𝑥𝑥) in (3.8) and it is necessary to apply numerical algorithms such as the 
Fast Fourier Transform, the Panjer recursion or the Monte Carlo simulation. 
This Paper proposes the Monte Carlo simulation. 
 
Next, the algorithms according to the different typology of the Severity 
Distribution are indicated: 
 
Monte Carlo simulation for the case of a single distribution fitted to Severity 
 
Let M = {365 days, 52 weeks} simulations of Monte Carlo where each 
simulation represents a simulated time unit within a year (note that M = 52 
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weeks has been chosen in this Thesis). And let C = 1,000,000 Monte Carlo 
simulations where each simulation represents a simulated year. 
 

1. Generate a random data, N, from the Frequency Distribution that 
determines the number of risk events that are predicted to occur in a 
week. 

2. Generate N random values of the Severity Distribution forming a 
sample of simulated Severities: 𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑁𝑁. 

3. Sum the simulated Severities from step 2 to get the value of 
Aggregate Loss in a simulated time unit i: 𝑙𝑙𝑖𝑖 = 𝑿𝑿1 +  𝑿𝑿2 + ⋯+
 𝑿𝑿𝑁𝑁. 

4. Repeat steps 1, 2 and 3 M times to obtain a sample of Aggregate 
Losses in one year: 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑀𝑀. 

5. Sum the losses from step 4 to get the value of the Aggregate Loss in 
a simulated year i: 𝑆𝑆𝑖𝑖 = 𝑙𝑙1 + 𝑙𝑙2 + ⋯+ 𝑙𝑙𝑀𝑀. 

6. Repeat steps 4 and 5 C times to obtain the vector of C Aggregate 
Losses that forms the Aggregate Loss Distribution 𝐺𝐺𝑆𝑆(𝑥𝑥): 
𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝐶𝐶. 

 
Monte Carlo simulation for the case of a two-component mixture fitted to 
Severity 
 
Let be a mixture formed by two components, “component one” and 
“component two”, where component one has a weight w and component two 
has a weight 1-w. Let be M = {365 days, 52 weeks} Monte Carlo simulations 
where each simulation represents a time unit within a year (note that M = 52 
weeks has been chosen in this Thesis). Let be C = 1,000,000 Monte Carlo 
simulations where each simulation represents a simulated year. 
 

1. Generate a random data, N, from the Frequency Distribution that 
determines the number of risk events that are predicted to occur in a 
week. 

2. Generate N random values from a Bernoulli distribution with 
parameter w (the weight of component one of the mixture), N ~ Be 
(w), which will take value 0 with probability 1-w and value 1 with 
probability w. 

3. Of those N values, generate the number of values that are 1 of the 
Severity Distribution of component one of the mixture, forming a 
sample of simulated losses: 𝑿𝑿1,𝑿𝑿2, …. 

4. Of those N values, generate the number of values that are 0 of the 
Severity Distribution of component two of the mixture, forming a 
sample of simulated losses: 𝒙𝒙1,𝒙𝒙2, …. 
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5. Sum the simulated Severities from steps 3 and 4 to get the value of 
the Aggregate Loss in a simulated time unit i: 𝑙𝑙𝑖𝑖 = 𝑿𝑿1 + 𝒙𝒙1 +  𝑿𝑿2 +
𝒙𝒙2 + ⋯. 

6. Repeat steps 1, 2, 3, 4 and 5 M times to obtain a sample of 
Aggregate Losses for one year: 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑀𝑀. 

7. Sum the losses from step 6 to get the value of the Aggregate Loss in 
a simulated year i: 𝑆𝑆𝑖𝑖 = 𝑙𝑙1 + 𝑙𝑙2 + ⋯+ 𝑙𝑙𝑀𝑀 

8. Repeat steps 6 and 7 C times to obtain the vector of C Aggregate 
Losses that forms the Aggregate Loss Distribution 𝐺𝐺𝑆𝑆(𝑥𝑥): 
𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝐶𝐶. 

 
Monte Carlo simulation for the case of a Severity Distribution with a tail 
threshold imposed 
 
Let be a Severity Distribution with a tail threshold that separates it into a 
body and a tail, where the body has one distribution fitted and the tail has 
another distribution fitted. Let's call p the top cumulative probability where 
the tail begins. Let be M = {365 days, 52 weeks} Monte Carlo simulations 
where each simulation represents a simulated time unit within a year (note 
that M = 52 weeks has been chosen in this Thesis). And let be C = 
1,000,000 Monte Carlo simulations where each simulation represents a 
simulated year. 
 

1. Generate a random data N from the Frequency Distribution that 
determines the number of risk events that are predicted to occur in a 
week. 

2. 2Generate N random values of the Uniform distribution (0, 1). 
3. Of these N values, generate the number of values less than p of the 

distribution fitted to the body of the Severity Distribution, forming a 
sample of simulated losses: 𝑿𝑿1,𝑿𝑿2, …. 

4. Of these N values, generate the number of values greater than or 
equal to p of the distribution fitted to the tail of the Severity 
Distribution, forming a sample of simulated losses: 𝒙𝒙1,𝒙𝒙2, …. 

                                                 

2 Steps 2, 3 and 4 could also be done by applying the Bernoulli distribution (p), where p indicates the 
highest cumulative probability where the tail begins. Generate N random values from a Bernoulli 
distribution with parameter p, N ~ Be (p), which will take value 0 with probability 1-p and value 1 with 
probability p. Of those N values, generate the number of values that are 1 of the distribution fitted to the 
body of the Severity Distribution and generate the number of values that are 0 of the distribution fitted to 
the tail of the Severity Distribution. 
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5. Sum the simulated Severities from steps 3 and 4 to get the value of 
the Aggregate Loss in a simulated time unit i. 𝑙𝑙𝑖𝑖 = 𝑿𝑿1 + 𝒙𝒙1 +  𝑿𝑿2 +
𝒙𝒙2 + ⋯. 

6. Repeat steps 1, 2, 3, 4 and 5 M times to obtain a sample of 
Aggregate Losses in one year:𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑀𝑀. 

7. Sum the losses from step 6 to get the value of the Aggregate Loss in 
a simulated year i: 𝑆𝑆𝑖𝑖 = 𝑙𝑙1 + 𝑙𝑙2 + ⋯+ 𝑙𝑙𝑀𝑀. 

8. Repeat steps 6 and 7 C times to obtain the vector of C Aggregate 
Losses that forms the Aggregate Loss Distribution 𝐺𝐺𝑆𝑆(𝑥𝑥): 
𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝐶𝐶. 

 
After completing the Monte Carlo simulation process, the data of the 
resulting vector are ordered from lowest to highest and the 99.90th and 95th 
percentiles that determine the Capital at Risk and Risk Appetite, 
respectively, are calculated. 
 
The following section, 3.6, details the mentioned risk measures. 
 
3.6.  Risk measures 
 
The risk measures, which use the Aggregate Loss Distribution as input, are 
the following: 
 
Capital at Risk (CaR) 
 
It represents the amount of Capital necessary to cover the Expected and 
Unexpected Losses due to operational risk that may be originated in a time 
horizon of one year with a confidence level of 1- 𝛼𝛼. It is based on the Value 
at Risk metric, and more specifically on the Operational VaR (OpVaR) 
metric. Its formula is in (3.11): 
 

𝐶𝐶𝑜𝑜𝐶𝐶(1 − α) = 𝑂𝑂𝑝𝑝𝑂𝑂𝑜𝑜𝑜𝑜(1 − 𝛼𝛼) = 𝐺𝐺𝑆𝑆−1(1 − 𝛼𝛼)               (3.11) 
 
Frachot, Georges & Roncalli (2001) suggest that the percentile (1-α) for 
purposes of Economic Capital should be established based on the Entity's 
rating. Table 3 shows the values of α: 
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Table 3. Values of the percentiles according to the rating 

Rating BBB A AA AAA 

1-α 99,75% 99,90%  99,95% 99,97% 

Source: Frachot et al. (2001) 
 

Assuming that the Entity for which its capital will be calculated has an A 
rating, according to Standard & Pool’s, Moodys and Fith, the (1-α) used is 
99.90%. Therefore, Capital at Risk, in this Paper, will be defined as the 
99.90th percentile of the vector of one million Aggregate Losses that forms 
the Entity's Aggregate Loss Distribution, for a time horizon of one year.  
 
Expected Loss (EL) 
 
It represents the potential loss that under normal conditions the entity 
expects to suffer in a period of one year. Therefore, it estimates loss values 
with a greater probability of occurrence. This risk measure is defined as the 
mean of the vector of one million Aggregate Losses that forms the 
Aggregate Loss Distribution. 
 
Unexpected Loss (UL) 
 
It represents events not foreseen by the entity with less probability of 
occurrence, but with very high loss values that would significantly impact 
the Capital of the financial entity. This risk measure is defined as the 
difference between the Capital at Risk and the Expected Loss (eq. (3.13)). 
 

𝐶𝐶𝑜𝑜𝐶𝐶 = 𝐸𝐸𝐸𝐸 + 𝑈𝑈𝐸𝐸 (3.11) 
𝑈𝑈𝐸𝐸 = 𝐶𝐶𝑜𝑜𝐶𝐶 − 𝐸𝐸𝐸𝐸 (3.12) 

  
Risk Appetite (RA) 
 
It represents the amount of risk that an entity is willing to seek and assume in 
pursuit of its objectives. This risk measure is defined as the 95th percentile 
of the vector of one million Aggregate Losses that forms the Aggregate Loss 
Distribution. 
 
Figure 4 shows a graph of the risk measures indicated in the Aggregate Loss 
Distribution: 
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Figure 4. Representation of risk measures in the Distribution of 
Aggregate Losses. Own elaboration 

 
Once the risk measures are obtained, these should be validated, which is 
explained in the following section. 
 
3.7.  Validation of total risk measures 
 
In case parametric distributions to Severity and/or Frequency could be fitted, 
the validation process consists on verifying that the “parametric total risk 
measures” are superior to the “empirical total risk measures”, where 
parametric risk measures refer to those obtained by the convolution of the 
continuous parametric random variable of Severity with itself a number of 
times given by the discrete parametric random variable of Frequency and 
empirical risk measures refer to those obtained by the convolution of the 
continuous empirical random variable of Severity with itself a number of 
times given by the discrete empirical random variable of Frequency. 
 
The justification behind this methodology is because the empirical 
distribution is based only on realized values and is not conservative. In 
addition, it should be verified that the figures of these measures are 
reasonable. 
 
3.8.  Allocation of total risk measures to each of the Cells of Basel 
 
The model uses a top-down approach, which consists of the the calculation 
of the total risk measures (at entity level) in the first instance, which has 
been already explained, and afterwards the disaggregation of these measures 
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among the Basel Cells presented by the Entity, which is going to be 
explained in this section.  
 
Each cell is a combination between a BL and a RT. This categorization is 
based on the principle of organizing losses into categories that share the 
same basic risk profile and behavior pattern, forming an array with 56 data 
Cells, showed in Figure 1, and BLs and RTs are indicated in Table 2. 
 
The allocation process is as follows: first, for each Cell, perform the 
convolution of the empirical r.v of Severity with itself a number of times 
given by the empirical random variable of Frequency (see sec. 3.4. ) using 
the method of Monte Carlo Simulation to obtain the empirical vector of one 
million Aggregate Losses corresponding to each Cell (see sec. 5.4 - Monte 
Carlo simulation for the case of a single distribution fitted to Severity. Next, 
for each Cell, calculate the empirical risk measures (see sec. 3.6. and 
subsequently calculate the proportion that each represents with respect to its 
total empirical risk measure. The risk measures assignable to each Cell will 
be the result of multiplying this proportion by the corresponding entity’s risk 
measure. 
 
To specify more, the risk measures assignable to Cell i are calculated with 
the following formulas: 
 

𝐶𝐶𝑜𝑜𝐶𝐶i =
𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑙𝑙 𝐶𝐶𝑜𝑜𝐶𝐶i

∑ 𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝐶𝐶𝑜𝑜𝐶𝐶𝑖𝑖56
𝑖𝑖=1

𝐶𝐶𝑜𝑜𝐶𝐶𝑠𝑠𝑛𝑛𝑙𝑙𝑖𝑖𝑙𝑙𝑦𝑦 , 𝑜𝑜 = 1, … ,56 
(3.13) 

𝐶𝐶𝑅𝑅i =
𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝐶𝐶𝑅𝑅i

∑ 𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝐶𝐶𝑅𝑅i56
𝑖𝑖=1

𝐶𝐶𝑅𝑅𝑠𝑠𝑛𝑛𝑙𝑙𝑖𝑖𝑙𝑙𝑦𝑦, 𝑜𝑜 = 1, … ,56 
(3.14) 

𝐸𝐸𝐸𝐸i =
𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑙𝑙 𝐸𝐸𝐸𝐸i

∑ 𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑙𝑙 𝐸𝐸𝐸𝐸i56
𝑖𝑖=1

𝐸𝐸𝐸𝐸𝑠𝑠𝑛𝑛𝑙𝑙𝑖𝑖𝑙𝑙𝑦𝑦 , 𝑜𝑜 = 1, … ,56 
(3.15) 

𝑈𝑈𝐸𝐸i =
𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝑈𝑈𝐸𝐸i

∑ 𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝑈𝑈𝐸𝐸i56
𝑖𝑖=1

𝑈𝑈𝐸𝐸𝑠𝑠𝑛𝑛𝑙𝑙𝑖𝑖𝑙𝑙𝑦𝑦, 𝑜𝑜 = 1, … ,56 
(3.16) 

 
where  
 

- 𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝐶𝐶𝑜𝑜𝐶𝐶𝑖𝑖 ,𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝐶𝐶𝑅𝑅𝑖𝑖 ,𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝐸𝐸𝐸𝐸𝑖𝑖 ,𝐸𝐸𝐸𝐸𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑙𝑙 𝑈𝑈𝐸𝐸𝑖𝑖: 
risk measures corresponding to Cell i obtained using as an input the 
empirical vector of one million Aggregate Losses of Cell i. Note that 
distributions of Severity and Frequency would be empirical; 

- 𝐶𝐶𝑜𝑜𝐶𝐶𝑠𝑠𝑛𝑛𝑙𝑙𝑖𝑖𝑙𝑙𝑦𝑦 ,𝐶𝐶𝑅𝑅𝑠𝑠𝑛𝑛𝑙𝑙𝑖𝑖𝑙𝑙𝑦𝑦,𝐸𝐸𝐸𝐸𝑠𝑠𝑛𝑛𝑙𝑙𝑖𝑖𝑙𝑙𝑦𝑦 ,𝑈𝑈𝐸𝐸𝑠𝑠𝑛𝑛𝑙𝑙𝑖𝑖𝑙𝑙𝑦𝑦: total risk measures 
attributable to the Entity obtained using as an input the total vector 
of one million Aggregate Losses (at entity level). 
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The reason behind the methodological proposal presented which consists of 
a top-down approach, rather than a bottom-up approach which consists of 
the calculation of the total risk measures (at the entity level) as the sum of 
the risk measures of each Risk Unit, lies in the existence of two problems, 
one is that numerous Cells have insufficient sample size and the other one is 
that the shape of the distribution makes modelling impossible, having to 
resort to the use of the empirical distribution or in distributions with many 
parameters giving rise to overfitting problems. This reasoning is justified by 
the analysis carried out in section 4. 
 
The benefit of this methodology is twofold: i) it solves the problem of data 
scarcity since the sample is large enough to be modelled with a parametric 
distribution of few parameters, and ii) it is not necessary to resort to external 
data to enlarge the sample, since external data have a completely different 
nature as it comes from other financial entities (see Table 1 for more 
information), managing to provide robust and reliable estimates. 
 
 

4. Data 
 
The sample of data used for the development and implementation of the 
proposed model is based solely on historical internal loss data due to 
operational risk generated from plausible loss data for a credit institution. 
Hereinafter, this anonymous entity will be referred to by the name “Entidad 
SA”. For confidentiality reasons, the data has been slightly modified, which 
may prevent the real comparison with the market, but does not invalidate the 
proposed methodology. 
 
The database contains the following variables: business line, risk type, 
country, currency, occurrence date, detection date, accounting date, gross 
loss, recovery, provision and net loss. 
 
The purpose of the present section is to perform a study of modelling of the 
Basel Cells and Business Lines in order to reach the conclusion of whether 
to model at the Cell level, at the Risk Unit level or at the Entity level. 
 
According to the methodology proposed by Basel II, it recommends 
estimating the distribution of losses individually for each of the Cells 
(Comité de Supervisión Bancaria de Basilea, 2006), which are made up of a 
Business Line and a Risk Type. This would be the ideal situation and could 
be carried out if each of the Cells had enough data and an appropriate shape 
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of the distribution to be modelled, so that both Severity and Frequency data 
could be modelled without falling into overfitting problems or resorting to 
empirical distribution. Next, we will see that this methodology cannot be 
carried out due to the aforementioned problem. 
 
For this, two studies have been performed: i) the analysis of the Severity and 
Frequency Distributions of each of the Basel Cells of which the entity is 
composed, and ii) the analysis of the Severity and Frequency Distributions 
of the Business Lines. The pursuit of both studies is the analysis of the 
sample size and the shape of the distributions of Frequency and Severity. 
 
Study of modelling of Cells 
 
Figure 5 shows the Severity histograms of each of the Cells whose ordinate 
axis indicates the number of losses and the abscissa axis indicates the 
Severity in logarithmic scale of base 10 and Figure 6 shows the Frequency 
histograms of each of the Cells whose ordinate axis indicates the probability 
and the abscissa axis indicates the number of events per week. 
 
In both Figures, it can be seen that most of the Cells could not be modelled 
due to two problems, the insufficient sample size that they present and the 
shape of the distribution that makes modelling impossible having to resort to 
the use of the empirical distribution which is considered to be not very 
conservative since it only takes into account realized values or having to fit 
distributions with many parameters giving rise to overfitting problems.  
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Figure 5. Severity histograms of the Basel Cells. Source: Own elaboration 
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Figure 6. Frequency histograms of Basel Cells. Source: Own elaboration 

 
 



Advanced model of calculation of Capital for operational risk… 

205 

Study of modelling of Business Lines 
 
In this context, as the option of modelling at Cell level has been discarded, 
the need arises to make Cell aggregations to form Risk Units. The criterion 
for forming Risk Units will be to take the Business Line as axis.  
 
Figure 7 shows the Severity histograms of each of the Business Lines whose 
ordinate axis indicates the probability and the abscissa axis indicates the 
Severity in logarithmic scale of base 10 and Figure 8 shows the Frequency 
histograms of each of the Business Lines whose ordinate axis indicates the 
probability and the abscissa axis indicates the number of events per week. 

 
Figure 7. Severity histograms of the Business Lines. Source: Own elaboration 

 
Figure 8. Frequency histograms of the Business Lines 

 
Again, it can be seen in Figure 7 and  Figure 8 that both problems already 
commented in the study of the Cells happen again, which are the insufficient 
sample size and the complicate shape of the distribution to be modelled. In 
particular, 5 of a total of 8 Business Lines have an insufficient sample size 
since they do not even reach the number of 1,000 events and the same 
number have a Frequency Distribution with a complicate to be modelled. 
Therefore, modelling at Risk Unit level is discarded. 
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After both studies, it is concluded that a segmentation of the data a priori to 
form Cells or Risk Units is not consistent because it makes the size of some 
samples insufficient to be able to model them. Therefore, the solution 
implemented in this model follows a top-down approach which consists of 
estimating a joint Aggregate Loss Distribution that encompasses all Cells (at 
entity level), calculating the risk measures (Capital at Risk, Risk Appetite, 
Expected Loss and Unexpected Loss) that would be the total risk measures 
for the entity and afterwards the disaggregation of them for each Cell.  
 
The benefit of this methodology is twofold: i) it solves the problem of data 
scarcity since the sample is large enough to be modelled with a parametric 
distribution of few parameters, and ii) it is not necessary to resort to external 
data to enlarge the sample, since external data have a completely different 
nature as it comes from other financial entities (see Table 1 for more 
information), managing to provide robust and reliable estimates. 
 
 

5. Model implementation 
 

The implementation of the model takes place in this section. To do this, the 
steps specified in section 2 will be followed. 
 
5.1. Collection, analysis and processing of data 
 
The first step is the collection, processing and inflation adjustment of the 
data. This process is detailed in section 3.1.  
 
5.2. Severity modelling 
 
The second step is the configuration of the Severity Distribution, the 
foundations of which are found in section 3.2. For this, the log-normal, log-
logistic, burr and beta prime distributions and mixture of two log-normals 
have been fitted to Severity data and all of them have subsequently been 
subjected to goodness-of-fit tests to determine which one provides the best 
fit. 
 
Calibration of probability distributions 
 
The parameters of the mentioned probability distributions have been 
estimated by the Maximum Likelihood method. They are shown in Table 4. 
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Table 4. Parameters of probability distributions fitted to the Severity data 

 Shape 
parameters 

Location 
parameters 

Scale 
parameters 

Weights 
(only mixtures) 

Log-normal3 s=1.96156 loc=0.49120 scale=756.51351  
Log-logistic 
(fisk)4 

c=0.92558 loc=1.00100 scale=682.30838  

Burr5 c=0.78208 
d= 2.00265 

loc=-0.5707 scale=210.48392  

Beta Prime6 a= 1.30236 
b= 0.71158 

loc=0.68933 scale=271.37123  

Mixture of two 
log-normals 

 loc1 = 2.63587 
loc2 = 3.09189 

scale1 = 0.43235 
scale2 = 1.01506 

weight1 = 0.427 
weight2 = 0.573 

Source: Own elaboration 
 

To offer a visual analysis of the degree of fit of each of the calibrated 
probability distributions, Figure 9 and Figure 10 show the probability 
density functions of each of them plotted on the empirical Severity 
Distribution. 
 

                                                 

3 Another parameterization of the log-normal distribution: σ=s, μ=ln(scale). 
4 Another parameterization of the log-logistic distribution: β=c, α=scale. 
5 Another parameterization of the burr distribution in Scipy: c= c, k=d. 
6 Another parameterization of the beta prime distribution: α=a, β=b. 
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Figure 9. Probability distributions fitted to the Severity data. Own elaboration7 

 

 

 

 

 

 
Figure 10. Mixture of two log-normals fitted to 
Severity data. Own elaboration8 

 

                                                 

7 The representation of the abscissa axis is performed on a logarithmic scale of base 10 and the values 
indicated on the abscissa axis are the original values. 
8 The mixture of two log-normals corresponds to fitting a mixture of two normals on the logarithm of 
base 10 of the data. 
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Visually, it can be appreciated that the best-fitting probability distribution is 
the mixture of two log-normals (see Figure 10). 
 
Goodness of Fit tests 
 
The probability distributions have been subjected to the Kolmogorov-
Smirnov (KS) and the Anderson-Darling (AD) tests. Additionally, the 
information criteria (AIC and BIC) have been calculated. Finally, for greater 
precision, the fit in the tail of the probability distribution with the highest p-
value has been evaluated. 
 
Table 5 shows the statistic and the p-value of both Goodness of Fit tests for 
each probability distribution. 
 
Table 5. Statistics and P-values of the Kolmogorov-Smirnov and Anderson-
Darling tests of probability distributions fitted to Severity 

 Kolmogorov Smirnov  Anderson-Darling 
 Statistic P-value   Statistic P-value 9 
Log-normal 0.066 2.471e-35   88.727 0.001 
Log-logistic (fisk) 0.0387 2.291e-12   37.119 0.001 
Burr 0.026 1.343e-05   11.711 0.001 
Beta Prime 0.025 3.165e-05   8.641 0.001 
Mixtura de dos log-normales  0.010 0.340   -0.119 0.25 

Source: Own elaboration 
 
The conclusion drawn is that the data follow a mixture of two log-normals 
with a confidence level of 99%, since it is the only probability distribution 
with a p-value greater than or equal to α = 0.01. 
 
It should be noted that it is very difficult to model Severity with a single 
simple probability distribution function because the typology of the losses 
due to operational risk is very complex (Fernández-Laviada, 2010). As is 
evident, none of the simple probability distributions fits, so a mixture of two 
log-normals had to be calibrated, which does provide a satisfactory fit. 
 
Together with the two previous tests, the AIC and BIC values present in 
Table 6 have been calculated. Note that this criterion will not be conclusive 
for choosing the best probability distribution. According to the information 

                                                 

9 Los p-valores de la prueba Anderson-Darling Two Samples tienen un límite inferior de 0,1% y un límite 
superior de 25%. 
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criteria, the preferable model will be the one with the lowest AIC and BIC 
values. 
 
Table 6. AIC and BIC of the probability distributions fitted to Severity data 

 AIC BIC 
Log-normal 1.914.430,693 1.914.459,454 
Log-logístic (fisk) 3.553.251,667 3.553.280,428 
Burr 1.872.742,378 1.872.780,726 
Beta Prime 1.872.296,509 1.872.334,857 
Mixture of two log-normals 3.453.496,187 3.453.544,122 

Source: Own elaboration 
 
It is appreciated that the probability distribution with the lowest AIC and 
BIC values is the beta prime. The mixture of two log-normals has higher 
AIC and BIC values since these two criteria penalize the number of 
parameters. In particular, the mixture of two log-normals has 5 parameters, a 
number greater than the number of parameters of the other distributions. 
 
Nonetheless, the conclusive test is the KS and AD tests, as stated in section 
3.2. , in which the best model is the mixture of two log-normals. 

Additionally, for greater precision, it has been visually verified, in Figure 
11, that the fit in the tail of the distribution resulting from the KS and AD 
tests is appropriate, which was the mixture of two log-normals. The first 
graph shows all data greater than € 1,000 and the second graph shows all 
data greater than € 1,000,000.  

 

 

Figure 11. Fit in the tail of the mixture of two log-normals.  
Source: Own elaboration 
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It is evident that the mixture of two log-normals provides a good fit in the 
tail. 
 
Therefore, it is concluded that the probability distribution chosen to model 
Severity is the mixture of two log-normals. 
 
5.3. Frequency modelling 
 
The third step is the configuration of the Frequency Distribution, whose 
foundations are in section 3.3. For this, the poisson, binomial, negative 
binomial and geometric distributions have been fitted to Frequency data and 
all of them have subsequently been subjected to goodness-of-fit tests to 
determine which one provides the best fit. 
 
Calibration of probability distributions 
 
The parameters of the mentioned probability distributions have been 
estimated by the Maximum Likelihood method. They are shown in Table 7. 
 
Table 7. Parameters of the probability distributions fitted to the Frequency data 

 Shape parameters 
Poisson10 μ = 1027,37387 
Binomial11 n = ∄ 

p = ∄ 
Negative binomial12 n = 4,31144 

p = 0,00418 
Geometric p = 0,00097 

Source: Own elaboration 
 
To offer a visual analysis of the degree of fit of each of the calibrated 
probability distributions, Figure 12 shows the probability density functions 
of each of them plotted on the empirical Frequency Distribution. 
 

                                                 

10 Another parameterization of the poisson distribution: λ=μ. 
11 The parameters of the binomial distribution do not exist because when they were estimated they gave a 
negative value and according to the binomial probability theory, their parameters have the following 
domain: n≥0 and 0≤p≤1.  
12 Another parameterization of the negative binomial distribution: r=n, p=p. 
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Figure 12. Probability distributions fitted to the Frequency data. Own elaboration13 

 
Visually, it can be appreciated that the best-fitting probability distribution is 
the negative binomial distribution. 
 
Goodness of Fit tests 

 
The probability distributions have been subjected to the Anderson-Darling 
(AD) test since this test is feasible for discrete distributions, while the 
Kolmogorov-Smirnov test is not. 
 
Table 8 shows the statistic and the P-value for each probability distribution. 
 
 
 
 
 
 

                                                 

13 As expected, the binomial probability density function does not appear due to the fact that its 
parameters do not exist. 
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Table 8. Statistics and P-values of the Anderson-Darling test of the probability 
distributions fitted to Frequency 

 Anderson-Darling  
 Statistic P-value14 
Poisson 137.099 0.001 
Binomial 259407.994 0.001 
Negative Binomial 0.519 0.202 
Geometric 53.885 0.001 

Source: Own elaboration 
 
 
The conclusion drawn is that the data follow a negative binomial distribution 
with a confidence level of 99% since it is the only probability distribution 
with a P-value greater than or equal to α = 0.01. 
 
Note that it is an achievement to have been able to fit the negative binomial 
distribution to the Frequency data since the typology of operational risk 
losses is very complex and therefore it is very difficult to fit a simple 
probability distribution. Usually, in this context, the empirical distribution is 
used, which should be considered the last option since it is not considered 
conservative. 
 
5.4. Estimation of the Aggregate Loss Distribution 
 
Fitted a distribution to Severity and fitted another distribution to Frequency, 
the fifth step consists of estimating the Aggregate Loss Distribution, whose 
foundations are in section 3.5.  
 
Remember that the random variable of Severity follows a mixture of two 
log-normals (μ1=2.63587, σ1=0.43235, w1=0.427, μ2=3.09189, σ2=1.01506, 
w2=0.573) and the random variable of Frequency follows a negative 
binomial distribution (n=4.31144, p=0.00418). 

 
As already indicated, the chosen time unit is week, therefore the algorithm 
specified below is formulated to obtain first the Aggregate Loss of one week, 
then the Aggregate Loss for one year and later the Aggregate Losses of 
1,000,000 years. The algorithm is as follows: 
 

                                                 

14 The p-values of the Anderson-Darling test have a lower limit of 0.1% and an upper limit of 25%. 
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1. Generate a random data N from the Frequency Distribution that 
determines the number of risk events that are predicted to occur in a 
week. 

2. Generate N random values from a Bernoulli distribution with 
parameter 0.427, N ~ Be (w), which will take value 0 with 
probability 0.573 and value 1 with probability 0.427. 

3. Of those N values, generate the number of values that are 1 of the 
Severity Distribution of component one of the mixture, forming a 
sample of simulated losses: 𝑿𝑿1,𝑿𝑿2, …. 

4. Of those N values, generate the number of values 0 of the Severity 
Distribution of component two of the mixture, forming a sample of 
simulated losses: 𝒙𝒙1,𝒙𝒙2, …. 

5. Sum the simulated Severities from steps 3 and 4 to get the value of 
Aggregate Loss in a simulated week i: 𝑙𝑙𝑖𝑖 = 𝑿𝑿1 + 𝒙𝒙1 +  𝑿𝑿2 + 𝒙𝒙2 +
⋯ 

6. Repeat steps 1, 2, 3, 4 and 5 52 times to obtain a sample of weekly 
Aggregate Losses in a year: 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙52. 

7. Sum the losses from step 6 to get the value of the Aggregate Loss in 
a simulated year i: 𝑆𝑆𝑖𝑖 = 𝑙𝑙1 + 𝑙𝑙2 + ⋯+ 𝑙𝑙52. 

8. Repeat steps 6 and 7 1,000,000 times to obtain the 1,000,000 
Aggregate Loss vector that forms the Aggregate Loss Distribution 
𝐺𝐺𝑆𝑆(𝑥𝑥): 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆1,000,000. 

 
The total Aggregate Loss Distribution (at entity level) obtained after the 
application of the previous algorithm is shown in Figure 13. 
 

 
Figure 13. Aggregate Loss Distribution of the Entity SA. Own 
elaboration 
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5.5. Calculation of the total risk measures 
 
Once the vector of Aggregate Losses has been obtained, and with it formed 
the Aggregate Loss Distribution at entity level, the sixth step takes place, in 
which the total risk measures are calculated, the foundations of which are 
found in section 3.6.  
The calculation of the risk measures is indicated below: 
 

− Capital at Risk (CaR): defined as the 99.90th percentile of the vector 
of one million aggregate losses. 

− Risk Appetite (RA): defined as the 95th percentile of the vector of 
one million aggregate losses. 

− Expected Loss (EL): calculated as the mean of the vector of one 
million aggregate losses. 

− Unexpected Loss (UL): calculated as the difference between the 
Capital at Risk and the Expected Loss. 

 
Table 9 shows the values of the mentioned total risk measures and Figure 14 
shows these measures represented in the entity's Aggregate Loss 
Distribution. 
 
 
Table 9. Total risk measures (Capital at Risk, Risk Appetite, Expected Loss and 
Unexpected Loss) of the entity 

Capital at Risk 
(CaR) 

Risk Appetite 
(RA) 

Expected Loss 
(EL) 

Unexpected Loss 
(UL) 

926,586,457 € 649,253,228 € 550,609,631 € 375,976,826 € 

Source: Own elaboration 
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Figure 14. Representation of total risk measures in the entity's 
Aggregate Loss Distribution. Own elaboration 

 
5.6. Validation of total risk measures 
 
Once the total risk measures have been obtained, they are validated, which 
constitutes the seventh step, the foundations of which are found in sec. 3.7.  
 
The validation is based on verifying that the parametric total risk measures 
are superior to the empirical total risk measures. The justification behind this 
methodology is due to the fact that the empirical distribution is based solely 
on realized values, thus is not considered conservative. 
 
Table 10 shows the figures of the total empirical and parametric total risk 
measures. 
 
Table 10. Comparison of the empirical and parametric total risk measures 

 
Capital at 

Risk 
(CaR) 

Risk 
Appetite 

(RA) 

Expected 
Loss 
(EL) 

Unexpected 
Loss 
(UL) 

Empirical 694.900.233 € 614.524.080 
€ 539.016.216 € 155.884.017 € 

Parametric 926.586.457 € 649.253.228 
€ 550.609.631 € 375.976.826 € 

Source: Own elaboration 
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It is verified that the parametric total risk measures are superior to the 
empirical total risk measures and are also reasonable, therefore, the 
validation is positive. 
 
3.9.  Allocation of total risk measures to each of the Cells of Basel 
 
Once the total risk measures (at the entity level) have been validated, the 
eighth step takes place, in which these total measures are disaggregated in 
each of the Basel Cells. The allocation process is described in section 3.8.  
 
Figure 15 shows the Aggregate Loss Distributions for each Cell with their 
corresponding empirical risk measures figures (not final). The ordinate axis 
indicates the probability and the abscissa axis indicates the amount of 
aggregate losses on a logarithmic scale.  
 
Table 11 shows the final figures of the risk measures of each Cell. 
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Figure 15. Aggregate Loss Distributions of the Basel Cells presented by the 
Entity SA. Source: Own elaboration 
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Table 11. Final risk measures figures (Capital at Risk, Risk Appetite, Expected Loss 
and Unexpected Loss) of the Basel Cells presented by the Entity SA 

Basel Cells Capital at Risk 
(CaR) 

Risk Appetite 
(RA) 

Expected Loss 
(EL) 

Unexpected Loss 
(UL) 

BL1_RT1                    -   €                     -   €                     -   €                         -   €  
BL1_RT2       1.053.723 €           593.645 €           110.000 €               943.723 €  
BL1_RT3       1.378.871 €           599.067 €           235.384 €            1.143.487 €  
BL1_RT4          124.870 €             61.103 €             18.064 €               106.806 €  
BL1_RT5            62.501 €             34.403 €             12.818 €                 49.684 €  
BL1_RT6                    -   €                     -   €                     -   €                         -   €  
BL1_RT7       5.229.756 €        2.916.024 €           594.579 €            4.635.178 €  
BL2_RT1                    -   €                     -   €                     -   €                         -   €  
BL2_RT2                   90 €                    51 €                      9 €                        81 €  
BL2_RT3                    -   €                     -   €                     -   €                         -   €  
BL2_RT4              1.852 €               1.020 €                  386 €                   1.465 €  
BL2_RT5                    -   €                     -   €                     -   €                         -   €  
BL2_RT6            86.710 €             44.549 €             19.272 €                 67.438 €  
BL2_RT7       1.130.387 €           495.536 €           190.292 €               940.096 €  
BL3_RT1     41.653.639 €      24.363.034 €      15.381.656 €          26.271.982 €  
BL3_RT2     29.790.291 €      22.466.329 €      23.177.710 €            6.612.581 €  
BL3_RT3       6.710.394 €        3.851.597 €        2.372.303 €            4.338.091 €  
BL3_RT4   348.127.867 €    285.156.497 €    307.632.900 €          40.494.967 €  
BL3_RT5       8.092.832 €        6.596.551 €        8.053.255 €                 39.577 €  
BL3_RT6     21.180.277 €      10.997.825 €        3.729.491 €          17.450.786 €  
BL3_RT7     59.164.776 €      46.576.685 €      51.423.471 €            7.741.306 €  
BL4_RT1       3.234.474 €        1.811.513 €           717.895 €            2.516.580 €  
BL4_RT2       8.461.175 €        4.652.065 €        2.395.584 €            6.065.591 €  
BL4_RT3       1.265.882 €           721.381 €           378.244 €               887.638 €  
BL4_RT4   338.205.040 €    205.291.535 €    116.505.137 €        221.699.903 €  
BL4_RT5       3.019.099 €        2.142.800 €        2.001.267 €            1.017.832 €  
BL4_RT6          613.369 €           315.496 €           116.780 €               496.589 €  
BL4_RT7     15.789.409 €      11.586.896 €      10.504.987 €            5.284.422 €  
BL5_RT1                    -   €                     -   €                     -   €                         -   €  
BL5_RT2                    -   €                     -   €                     -   €                         -   €  
BL5_RT3                    -   €                     -   €                     -   €                         -   €  
BL5_RT4              2.462 €               1.387 €                  257 €                   2.205 €  
BL5_RT5                    -   €                     -   €                     -   €                         -   €  
BL5_RT6            14.803 €               5.694 €               2.914 €                 11.889 €  
BL5_RT7            20.970 €               9.831 €               3.012 €                 17.958 €  
BL6_RT1                    -   €                     -   €                     -   €                         -   €  
BL6_RT2                    -   €                     -   €                     -   €                         -   €  
BL6_RT3                    -   €                     -   €                     -   €                         -   €  
BL6_RT4            19.091 €             10.759 €               1.999 €                 17.092 €  
BL6_RT5                    -   €                     -   €                     -   €                         -   €  
BL6_RT6          244.567 €           134.538 €             33.811 €               210.756 €  
BL6_RT7     21.059.519 €      11.829.084 €        2.363.323 €          18.696.196 €  
BL7_RT1                    -   €                     -   €                     -   €                         -   €  
BL7_RT2                    -   €                     -   €                     -   €                         -   €  
BL7_RT3              1.026 €                  578 €                  107 €                      919 €  
BL7_RT4       2.248.613 €           977.350 €           295.606 €            1.953.007 €  
BL7_RT5                    -   €                     -   €                     -   €                         -   €  
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BL7_RT6          129.086 €             69.832 €             30.694 €                 98.392 €  
BL7_RT7       3.781.586 €        2.203.245 €           968.359 €            2.813.227 €  
BL8_RT1                    -   €                     -   €                     -   €                         -   €  
BL8_RT2                    -   €                     -   €                     -   €                         -   €  
BL8_RT3                    -   €                     -   €                     -   €                         -   €  
BL8_RT4          550.578 €           392.457 €           340.125 €               210.453 €  
BL8_RT5              2.140 €               1.106 €                  327 €                   1.813 €  
BL8_RT6          615.499 €           410.352 €           302.010 €               313.489 €  
BL8_RT7       3.519.234 €        1.931.415 €           695.605 €            2.823.628 €  
TOTAL      926.586.457 €    649.253.229 €    550.609.631 €        375.976.826 €  

Source: Own elaboration 

 
 

6. Results 
 
6.1.  Evaluation of the results of the risk measures of the Cells 
 
This section has been designed to evaluate the results obtained in the 
previous section, specifically in Table 11, in order to identify those Cells 
with the highest charges for Capital at Risk, Risk Appetite, Expected Loss 
and Unexpected Loss, seek consistency and draw conclusions. Additionally, 
a recommendation is made for the budget of risk mitigation plans. 
 
It should be noted there are two very significant Cells, which reach 
approximately 75% of the risk measures and these are BL3_RT4 and 
BL4_RT4, where BL3 refers to “Retail Banking”, BL4 to “Commercial 
Banking” and RT4 to “Clients, Products and Business Practice”. 
 
Both have a similar associated Capital at Risk, however, the difference 
between them lies in their charges for Expected Loss and Unexpected Loss. 
BL3_RT4 has a higher Expected Loss and BL4_RT4 a higher Unexpected 
Loss. The latter is due to the fact that the empirical Severity Distribution of 
BL4_RT4 has greater asymmetry to the right and greater kurtosis that can be 
appreciated in its heavier right tail, which leads to a greater Unexpected Loss 
(see Figure 5). 
 
Another conclusion drawn from the fact that both Cells share the same Risk 
Type, RT4, is that this risk is the most damaging because it causes greater 
operational losses, leading to a higher Capital charge. 
 
Given that companies have limited budgets to establish risk mitigation plans, 
in this Paper it is proposed that this budget should be allocated based on the 
Expected Loss, assigning a larger budget to the Cell with the highest 
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Expected Loss, in this case BL3_RT4. Point out that this budget will be 
additional to the Capital assigned to the Cell. The reason for this proposal is 
that the Expected Loss by definition is the potential loss with the highest 
probability of occurrence, therefore, it is essential to apply risk mitigation 
plans since these losses are very likely to occur. 
 
6.2.  Evaluation of the results of the total risk measures of the Entity 
 
In this section the total risk measures are evaluated. 
 
Risk Appetite had been defined as the amount of risk that an entity is willing 
to seek and assume in pursuit of its objectives, and Capital at Risk had been 
defined as the amount of money necessary to cover Expected and 
Unexpected Losses. Once these two definitions have been established, 
another two are introduced, the Risk Tolerance and Risk Capacity. The first 
refers to the acceptable level of risk variation and the second to the 
maximum amount of risk that the entity is capable of bearing. 
 
Given these definitions, the Risk Capacity would coincide with the Capital at 
Risk and the Risk Tolerance would be equal to the difference between the 
Risk Capacity and the Risk Appetite. 
 
Figure 16 sows a representation of the Risk Appetite, Risk Tolerance and 
Risk Capacity measures in the Aggregate Loss Distribution of the Entity SA. 
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Figure 16. Risk Appetite, Risk Tolerance and Risk Capacity of the Entity SA 
 
Analysing the graph, it can be appreciated that the magnitude of Risk 
Tolerance reaches 30% of the Risk Capacity. This percentage is considered 
quite high because it means that the Entity can bear a 30% risk in addition to 
the risk it was seeking to assume (Risk Appetite). 
 
This allows to conclude that the proposed model has a notable degree of 
conservatism while improving the Standard Formula as it captures the 
entity's risk profile. 
 
 

7. Conclusions 
 
The proposed advanced model to quantify the Capital necessary for covering 
losses due to operational risk using a top-down approach has proven to be a 
robust model based on the Loss Distribution Approach (LDA), on the Monte 
Carlo simulation and on the Value at Risk measure. 
 
The methodology captures the true risk profile of the Entity using only 
internal loss data, as these are already clearly linked to the Entity's business 
activities, technological processes and risk management procedures. It 
relegates the use of external loss data and scenarios, since the former, as they 
come from other financial entities, have a totally different nature and 
therefore do not reflect the risk profile of the Entity in question, and the 
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latter are invented situations, which implies that both the Severity and 
Frequency data are unreliable, not making it clear to what extent they feed or 
contaminate the sample. 
 
It solves the data scarcity problem by modelling jointly all the loss data, 
resulting in a large enough sample that allows capturing the true behavior of 
the data using parametric distributions for Severity and Frequency of few 
parameters without having to relapse into overfitting problems. 
 
It achieves the maximum level of granularity a posteriori, since once the 
Distribution of Aggregate Losses of the Entity is obtained and with it the 
total risk measures are calculated (Capital at Risk, Risk Appetite, Expected 
Loss and Unexpected Loss), these are disaggregated into the Basel Cells. 
 
Using the Monte Carlo simulation, the subjectivity factor is reduced to a 
minimum since a million possible losses are generated randomly through the 
convolution of the random variable of Severity with itself a number of times 
given by the random variable of Frequency. This convolution is necessary to 
combine discrete random variables from the Frequency Distribution and 
continuous random variables from the Severity Distribution. 
It proves to be a model with a notable degree of conservatism because it is 
based on a high percentile for the Value at Risk measure, specifically, on the 
99.90% percentile for Capital, in addition to it, the Risk Tolerance reaches 
30% on the Risk Capacity with which the entity can bear a 30% additional 
risk to the risk it was seeking to assume (Risk Appetite), and what is more 
important, Capital covers expected and unexpected losses. 
 
It allows identifying the Cells with the highest operational risk presented by 
the Entity, information that can be used for the provision of risk mitigation 
plans, assigning a greater budget to those Cells with the highest Expected 
Loss since, by its definition, it is the potential loss with the highest 
probability of occurrence. 
 
Other conclusions obtained during the implementation were that extreme 
observations, both in Frequency and Severity, have a high impact on the 
Capital charge. 
 
Therefore, it is concluded that the advanced model proposed proves to be a 
robust model capable of giving reliable estimates of Capital at Risk and Risk 
Appetite. 
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