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Abstract 

The aim of this paper is to implement, one of the most representative 

supervised learning approaches, the decision tree based ensemble method 

called gradient boosting for classifying the number of claims caused by storms 

in Greece using data from a major insurance company operating in Greece. 

Finally, a machine learning algorithm is used to for categorising the number 

of claims which have been occurred by a “storm event” into 3 categories: “no 

claims”, “1 claim”, “2 or more claims”. 

Keywords: cimate-related insurance claims, ensemble learning, decision 

trees, boosting. 

Resumen 

El objetivo de este trabajo es aplicar uno de los enfoques de aprendizaje 

supervisado más representativos, el método de conjunto basado en árboles de 
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decisión denominado gradient boosting, para clasificar el número de siniestros 

causados por tormentas en Grecia utilizando datos de una importante 

compañía de seguros que opera en este país. Por último, se utiliza un algoritmo 

de aprendizaje automático para clasificar el número de siniestros que se han 

producido como consecuencia de un "evento de tormenta" en 3 categorías: 

"ningún siniestro", "1 siniestro", "2 o más siniestros". 

   

Palabras clave: siniestros de seguros relacionados con las tormentas, 

aprendizaje conjunto, árboles de decisión, boosting. 

 

 

1. Introduction 

 

Weather-related phenomena such as floods, windstorms, hailstorms and 

wildfires can cause extensive financial losses. Insurance companies can find 

it challenging to distinguish between the impacts of the underlying 

meteorological perils for each given event and claim due to various factors 

including complexity and the business cost involved. The individual impacts 

of flood, strong winds and hail are often combined and classified into a single 

cause for an insurance claim such as a “storm event”. To better price and 

reserve for future perils, it could be beneficial for insurers to distinguish 

between these underlying components even when within the same insurance 

claim. Providing a business solution to tackling this problem is important 

because by having a better model and understanding of the underlying perils 

for a claim, an insurer can achieve better pricing and reserving whilst 

policyholders can pay a fairer price for the policy that they buy. Insurers are 

expanding traditional techniques of analysis, for example by incorporating 

data science techniques, to hopefully improve models, leverage larger sets of 

data, “unlock” hidden data patterns and free up resources within the team, 

where currently a lot of the data, data cleansing and experience analysis is 

driven by people within the team. Given this and the potential large amounts 

of data involved, using machine learning approaches seems optimal to analyse 

such large sets of insurance, geographical and meteorological data. 

 

In recent years, there have been various non-life insurance studies related to 

climate risks. Below, we share an example spread of climate-risk work - though 

please do note that this is not meant to be a definitive and exhaustive list of such 

works. Starting from Yang et al. (2022), the focus lies on the increasing 

frequency and severity of flood risk due to climate change which could have the 

potential to increase homeowner insurance claims. With this in mind, they build 

a “random forest” model with two steps: i. damage level classification and claim 

number classification; and ii. sub-sampling strategies, using a combination of 
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spatial, topography, land and meteorological data. In Lyubchich, Newlands, 

Ghahari & Gel (2019) one can find a thorough review of recent advancements 

on weather-related risk modelling and assessment for agricultural and home 

insurances using various statistical and machine learning methodologies. For 

instance, Ahmed & Serra (2015) uses statistical copulas to identify how by 

introducing agricultural revenue insurance contracts in Spain, this would 

influence insurance premiums compared to yield insurance schemes. Moreover, 

Choudhury, Jones, Okine & Choudhury (2016) builds a multiple classification 

and autoregressive error model whilst they also perform a model-based cluster 

analysis to identify what signals would trigger a drought-insurance payout. 

Also, Tack & Ubilava (2015) is concerned with the effect of climate tele-

connections, such as the El Ni ̃no southern oscillation on US government-set 

premium rate pricing for cotton, using a moment-based maximum entropy 

modelling approach indicating that private insurers would have the potential to 

decrease claims paid by 10-15 percent on average. The following article 

Rohrbeck, Eastoe, Frigessi & Tawn (2018) accounts for the dependence 

between various weather events such as rainfall or snow-melt, and the count of 

water-related property insurance claims aiming for modelling large claims 

counts within a mixture and extremal mixture modelling statistical framework 

being based on a discretised generalised Pareto distribution. Moreover, they 

develop a temporal clustering algorithm for the derivation of new explanatory 

variables in an effort to better comprehend how claims and weather-related 

events relate. The article of Mobley, Sebastian, Blessing, Highfield, Stearns & 

Brody (2021) highlights the importance of using machine learning methods to 

estimate flood hazards across large geographical territories in a computationally 

cost effective way, where they build a random forest model for classification in 

order to predict flood probability across the Texas Gulf Coast region using a 

large National Flood Insurance Program (NFIP) insurance claims geospatial 

dataset. 

 

The article of Leblois, & Quirion (2013) gives a summary of the methods and 

challenges faced by weather-based insurance indices, i.e. rainfall, water stress, 

drought, and remotely sensed vegetation indices suggesting that focusing on 

past data does not allow for accurately accounting for complex non-

stationarities in space and time associated with events of high temperature or 

rainfall. The article of Knighton, Buchanan, Guzman, Elliott, White & Rahm 

(2020) develops a random forest to predict parcel-level and tract-level flood 

insurance claims within New York State based on a US hydrologic and social 

demographic dataset for flood exposure mapping. In addition to weather risks 

affecting spatial and temporal correlation of insurance indices and their 

covariates, climatic change also can increase the volatility of weather variables, 

generating non-stationary loss distributions, which are challenging to estimate 
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reliably, adding uncertainty to actuarial rate-making as in the article of Odening 

& Shen (2014). The article of Daron & Stainforth (2014) develops Bayesian 

belief networks for helping insurers to assess weather index insurance viability 

in developing countries from a climate viewpoint. The article of Tesselaar, 

Wouter Botzen & Aerts (2020) examines how vulnerable EU river line flood 

insurance systems are to global reinsurance market conditions, i.e. hard and soft 

markets, and climate change by applying a proprietary flood insurance model. 

 

As we have seen in the aforementioned literature, the use of “ensemble 

learning” methods using “decision trees” as “base learners” for studying 

climate-related claims in non-life insurance is a popular option, see for 

instance Yang et al. (2022), Mobley, Sebastian, Blessing, Highfield, Stearns 

& Brody (2021), and Knighton et al. (2020). However, the focus has been 

predominantly on “random forest” methodology and other powerful ensemble 

learning approaches such as boosting were not explored. In this article, we 

adopt a simplified approach and suggest a well-known decision tree based 

ensemble method called gradient boosting to classify the number of claims 

caused by storms in Greece, where the data has been taken from a local insurer 

in Greece, and finally use a machine learning algorithm to help categorise the 

number of claims which have been occurred by a “storm event” into 3 buckets: 

“no claims”, “1 claim”, “2 or more claims”. In particular, the “gradient 

boosting” process we use in this article is described in this section involves 

the following steps. Firstly, we fit a “shallow decision tree” on to the data. By 

“shallow” we mean a “decision tree” with very few splits on the predictors 

with highest predictive power. These splits are determined by a heuristic 

approach, as finding the optimal set of splits is a computationally difficult 

problem Hyafil & Rivest (1976). These trees are so called weak learners and 

give just a lower prediction error rate than the one that would result from 

random guessing. This has to do with the main idea behind ensemble 

modelling, see for example Breiman (1996), which is to build a number of 

weak models and then combine them into a stronger one in order to reduce 

bias, and increase model accuracy. After we have fit a “shallow decision tree” 

to the data, we then fit the next “decision tree” to the residuals of the first one. 

The residuals are the differences between the prediction and the actual class 

labels, and thus the second decision tree addresses the shortcomings of the 

first one. Then, we add this second tree into the algorithm. We continue the 

process and fit a third tree to the residuals of the second tree and then we 

proceed by adding the third tree into the algorithm and so on. The process 

stops when adding more decision trees does not result in a more “powerful” 

model. Each individual model is weighted according to some criterion and the 

ensemble is a “stage-wise additive” model (i.e. adding “decision trees” 

sequentially of all individual trees. The structure of the research paper is the 
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following. In Section 2, we discuss some relevant machine learning 

techniques. In Section 3, we present the novel dataset and in Section 4 the 

machine learning method we use to solve our classification problem. In 

Section 5, we present the results and in Section 6 we provide some remarks 

and future research ideas. 

 

 

2. Machine learning preliminaries 

 

Interest and use of machine learning techniques are increasing each day - 

whether in our daily lives for example via smart technology, or in business, 

for example with a greater focus from insurers, and they look to incorporate 

such techniques to reduce internal costs and improve consumer experiences. 

Before we continue with our analysis, in this section, we will introduce some 

machine learning concepts that will hopefully be useful for the reader to 

understand the approaches used by us. The explanations given here are not 

meant to be complete nor exhaustive, but more to give the reader a better 

overview of the methods used and hence how and why they fit into this study. 

 

 

2.1. “Supervised” and “Unsupervised” learning 

 

“Supervised” and “unsupervised” learning are 2 fundamental approaches which 

we can take in machine learning. “Supervised learning” builds models where 

the dataset is labelled, and has input data and out-put variables. Hence, 

“supervised learning” can be used to calculate outcomes e.g. for future 

predictions of values based on historic data. “Unsupervised learning” builds 

models where the dataset outputs are not labelled, and hence can be used to find 

“hidden” patterns and relationships within the data e.g. for categorisation 

problems. Generally, “supervised learning” is computationally simpler, 

produces a more accurate output but requires external supervision to “train” (i.e. 

construct) the model when compared to “unsupervised learning”. However, it 

also requires more human intervention and as such may potentially cost more 

to implement. For more on general background to both approaches, please see 

for example www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning 

 

 

2.2. Algorithms and datasets 

 

A typical process within machine learning is to use data to develop a model 

which hopefully mimics the outcome required, within a certain level of 

accuracy/materiality threshold. The original dataset itself is split into a “train” 

http://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
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dataset and “test” dataset, where the “train” dataset is the larger proportion of 

the data. The “train” dataset is used to develop an initial model, where the 

model is based on an underlying individual algorithm/set of algorithms, 

usually via an iterative process until a certain level of accuracy is reached. 

Once the model is “trained”, we use the “test” dataset to check the accuracy 

of the model, and ensure that the model has not been “overtrained” and biased 

to the input data originally used. There is a question of which algorithm to 

use: we may choose a range of algorithms which we initially feel are 

appropriate for the problem we are analysing, and compare the accuracy of 

the outputs of each algorithm before decision which to choose. 

 

 

2.3. Ensemble learning 

 

Above we mentioned the use of algorithms within machine learning. 

Ensemble learning is a collection of models which tend to produce a more 

accurate output i.e. “the whole is greater than the sum of the parts”. For more 

details of merging predictions in such a manner please see for example 

Breiman (1996), Clemen (1989), Perrone (1993) and Wolpert (1992). The 

building blocks within this framework are called “base learners”. Ensemble 

learning takes a “blend” or “average” of these “base learners” to hopefully 

remove any inherent bias produced by an individual “base learner” and to 

produce an overall better output. One popular base learner is a decision tree 

and it is discussed further below. For more background on “ensemble 

learning”, including some background to mathematical detail, please see 

Dietterich et al. (2002). 

 

 

2.4. Decision trees 

 

A “decision tree” is a “supervised learning” approach where the output is 

decided based on a series of decisions at each “node” - similar to a branches 

on a tree where the decisions can branch out. For more background, include 

graphical explanations of “decision trees” please see Charbuty & Abdulazeez 

(2021). We present a mathematical formulation of a classification decision 

tree. Suppose that we have a collection of n observations, each of which 

consists of a response variable and k predictors. For the ith observation, we 

denote it with the notation (yi, xi1, xi2, ..., xip). To ease notation, we will also 

denote the p-dimensional vector of predictor (xi1, ..., xip) by xi. For the 

purpose of this paper, we assume that yi is categorical and can take up to K 

distinct values, which we shall denote by {0, 1, · · ·, K − 1}. Any of the 

predictors can be either continuous and numeric, or categorical. For ease of 
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exposition, let us assume that they are all continuous and generalise to the 

categorical case later. 

 

The goal of decision tree is to split the feature space into m non-overlapping 

regions, denoted R1, ...Rm, such that all observations within the same region 

will have the same prediction. However - given the enormous number of ways 

one can partition the feature space, one needs to restrict the shape that these 

regions can take. One simple way to do that is to restrict the regions Ri to be 

a *cylinder set*, i.e. sets of the form: 

 

 
 

where all Li, Ui belongs to [−∞, ∞]. We also allow any of the inequalities to 

be strict or non-strict. As it turns out, even under this restriction, to find in 

some sense an optimal collection of cylinder sets would present an impossible 

computational challenge. Therefore, we will need to restrict also the 

procedures by which these cylinder sets might arise. We will describe the 

procedure here in a somewhat informal way. We start with the entire feature 

space, i.e, the set of all possible values for the predictors, which in this case is 

simply Rp. We will now find an index-threshold pair (l, t), where t ∈ {1, ..., 

p} and t ∈ R and split Rp into two sets: 

 

 
 

All observations in R1 (respectively, R2) should have the same prediction. In 

the case where the response is categorical, we take the estimate to be the most 

commonly occurring value. Formally, we define: 

 

 
 

μ2 is defined similarly. 

 

In order to optimise the choice of (l, t), we need some notion of optimality, a 

mechanism that punishes ’bad’ estimates. Intuitively, a leaf node is good when 

it correctly classifies a large proportion of the responses, i.e. they coincide 

with the *modal class*. We say that this region is *pure* and seek to minimise 

the *impurity* of this region. Given a region R and an estimate ˆμ for the 

modal class, by an *impurity* function we mean a mapping Q(R, ˆμ) that, 

informally speaking, is increasing with the *impurity* of this region. We shall 
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minimise the following weighted sum (we abuse notations where and write, 

for example, |R1| for the number of observations with predictors in R1): 

 

 
 

Thus, the optimal (l∗, t∗) is defined by: 

 

 
 

There are a number of candidates loss functions that can play this role. Given 

a region R and a class k, we define: 

 

 
 

the proportion of class k observations in class m. One natural and easily 

interpretable candidate is the misclassification error rate. 

 

 
 

Two other options are the Gini Index and the Cross Entropy (denoted G and 

D below, respectively). It can be shown that these functions will tend to zero 

as ˆp(R, k) is either really close to 0 or 1, implying a high level of class purity. 

 
 

Let us now turn our attention to the leaf node R1. At this stage, we will go 

ahead and split each of the leaf nodes into further regions. For instance, at R1, 

we will search for another pair (h, th) that splits the R1 into two regions: 

 

 
 

With ˆμ1,1 and ˆμ2,1 defined as above, we split R1 by minimising L(l, t, R1). 

After this step, R1 will no- longer be the leaf node. Rather R1,1 and R1,2 will 
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become the leaf node. R2 will be split similarly. At each iteration, we can split 

a leaf node into two leaf nodes, and each of them into two further leaf nodes, 

hence the name ’recursive binary splitting’. At some point, we will want to 

terminate this splitting process. Clearly, it is impossible to split a region that 

has only one observation. However, such a small region would imply a very 

finely divided and overfitted tree, and we want to stop the process some time 

before that. Thus, we implement a *terminating rule* that inhibits a leaf node 

from splitting. Two simple terminating rules are: 1. *minimal leaf size*, which 

disallows splitting once a leaf node falls below a certain size and 2. *maxmium 

tree depth*, which terminates the algorithm once the tree has reached a certain 

number of layeres. 

 

Generalisation to Categorical Predictors. Now, let us assume that some of the 

predictors are categorical. For the sake of concreteness, suppose that x1 is 

categorical with L different levels. The feature space is now no longer Rp. Let 

us denote it by Θ. Then given any region R, if we attempt to split it by x1, we 

will search for a pair of index-subset (l, T), where l ∈ {1, .., p} and T is a 

subset of {1, ..., L} and divide R into two sub-regions: 

 

 
 

The rest of the algorithm proceeds exactly as before. 

 

 

2.5. Boosting 

 

The general idea behind “boosting” is that the “base learners” within an 

“ensemble” are developed sequentially in a way that each of them focuses on 

the data which produced worse predictions to now make more accurate 

predictions, such that the accuracy of the overall model increases. Hence, this 

should reduce the bias and variance of the outputs. The “base learners” are 

normally “decision trees” which are constructed through an iterative process 

namely “recursive partitioning”, see Breiman, Friedman, Olshen & Stone 

(1984), which splits the data into an initial partition, and then splits this 

partition into smaller groups with the process continuing up until a stopping 

criterion is reached. There are many variations of boosting and gradient 

boosting, see Friedman, Hastie & Tibshirani (2001) and Friedman (2001) 

across a plethora of applications. The underlying philosophy is that we can 

minimise the overall prediction error by combining the best possible next base 

learner to the previous ones, see for example Freund, Schapire & Abe (1999). 
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The additive mechanism of boosting implies that it is suited for prediction of 

continuous values. Thus, for classification trees, we must find a connection 

between the categorical outcome, and the continuous values returned by the 

additive ensemble method. The technique here is borrowed from GLM: 

instead of predicting the categorical outcome, we will predict the probabilities 

of the outcomes. Moreover, at each step, the deviance residual is utilised. 

 

To simplify the exposition, let us consider the case where the response can 

take only two values: 0 and 1. In this case, the response can be interpreted as 

coming from a Bernoulli distribution, whose parameters depending on the 

values of the predictors (or rather pedantically, the region in the feature space 

it belongs to). We digress briefly to recall some facts about the logistic 

regression model, the classic binary outcome GLM. In this model, the 

connection between the Bernoulli success probability and the predictors is 

established canonically by considering the log-odd, i.e.: 

 

 
 

where η is the linear predictor. Moreover, π can be retrieved by inverting the 

relationship above to π = σ(η), where 

 

 
 

is the *sigmoid function*. 

 

Firstly, we consider a tree stump where all observations are predicted the same 

log-odds. That is: 

 
 

Before the incrementing step, we need to borrow another concept from GLM. 

For a logistic regression mode, given a prediction ̂ πi for each observation, the 

total deviance residuals is given by: 

 

 
 

At each step, F0(xi) is incremented in such a way that minimises the deviance. 

Mathematically, for m = 1, · · · , M , we fit a tree hm such that: 



Classification of climate-related insurance claims using gradient boosting 

 

159 

 

 
 

and define Fm = Fm−1 + hm. The probability of yi belonging to class 1 is 

σ(FM (xi)). 

 

Multiclass Classification Case. Let us now turn into the case where the 

response can take an arbitrary number of values. For concreteness, suppose 

there are K possible levels, denoted {0, 1, ..., K−1}. We observe that, in the 

binary classification case, the log-odds can be interpreted as follows: 

 

 
 

The broad idea for this case is to treat these K − 1 log-odds independently and 

build K − 1 corresponding boosted ensemble, before combining them. Since 

the general framework has been described in details in the binary case, we 

take the liberty to describe this case rather briefly. 

 

First, define for j = 1, · · · , K – 1 

 

 
 

For m = 1, · · ·, M , define 

 

 
 

At the end, we obtain the following system of K − 1 equations: 

 



G. Tzougas, V. Dang, A. John, S. Kroustalis, D. Dey, K. Kutzkov 

160 

 
 

which can be simplified thanks to the relation  

 

 
this reduces to: 

 

 
 

One form of boosting is Gradient Boosting. The ensemble here is made up of 

“base learners” where each “base learner” is a “decision tree”. The “gradient 

boosting” element of this process refers to the underlying algorithm (a 

“gradient descent” algorithm) which is used reduce the loss with each 

incremental additional to the overall “ensemble” model. It is a common choice 

for classification problems to combine “decision trees” with “gradient 

boosting” because of the scalability of the approach and optimal results it 

yields on tabular data, and currently, this seems popular in industry to use 

“gradient boosting”. For more details on “gradient boosting”, and detail of the 

open-source software used, including more mathematical background, please 

see for example here Ke et al. (2017). 

 

 

2.6. Model 

 

Starting from a Greek P&C insurance dataset 𝐷 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁 , we use gradient 

boosting to find an approximation, �̂�(x), of a function F*(x), which is the 

mapping from instances x to their output values y, via minimizing the 

expected value of a given loss function, L(y, F(x)). In our case, we solve a 

multiclass classification problem with the three classes presented in Figure 2. 

The loss function is categorical cross–entropy defined as 
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where  ỹi = Pr[F (xi) == yi] is the probability that example xi belongs to class 

yi. The probabilities are computed as described in the previous section. Note 

that the cross–entropy function is convex and the gradient with respect to each 

tree can be efficiently computed. By using gradient boosting, we develop an 

additive approximation of F ∗(x) as a weighted sum of functions, 

 

𝐹𝑘(𝑥) = 𝐹𝑘−1(𝑥) + 𝜌𝑘𝑔𝑘(𝑥)             (10) 

where ρk reflects the weight of the kth function, gk(x). It is worth noting that 

these functions are base learners within a model ensemble and these base 

learners, in our case, are decision trees, see Breiman, Friedman, Olshen & 

Stone (1984). The construction of this additive approximation of F(x) happens 

iteratively. In particular, firstly, we obtain a constant approximation of F*(x) 

as 

 

𝐹0(𝑥) =α∑ 𝐿𝑁
𝑖=1 (𝑦𝑖 , 𝛼)     (11) 

 

and then the succeeding models need to minimize 

 

(𝜌𝑘 , 𝑔𝑘(𝑥) =  𝜌,𝑔  ∑ 𝐿𝑁
𝑖=1 (𝑦𝑖 , 𝐹𝑘−1(𝑥𝑖) + 𝜌𝑔(𝑥𝑖)).   (12) 

 

 

The value α is constant in the sense that it is independent of the input features 

xi. In fact, the optimal constant α optimizes the loss function for the given 

label distribution. In the case of categorical cross-entropy, α is the proportional 

distribution of the labels yi, i.e.,  

 

 
 

for each class c. 

 

Nevertheless, the aforementioned optimization problem is not solved directly. 

In particular, we train each model gk on a new dataset  𝐷´ = {𝑥𝑖, 𝑟𝑘𝑖}𝑖=1
𝑁 , where 

the residuals, rki, are computed by 

 

𝑟𝑘,𝑖 = [
𝜕𝐿(𝑦𝑖,𝐹(𝑥))

𝜕𝐹(𝑥)
]  𝐹(x)=𝐹𝑘−1(x)    (13) 
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and then the value of ρk is subsequently calculated using a line search 

optimization strategy. Of course, as with other machine learning algorithms 

the prediction performance of gradient boosting ensemble is assessed using a 

separate test set with unseen data points or using cross validation techniques. 

An important advantage of gradient boosting compared to other methods such 

as logistic classification or a neural network model is that we don’t need 

careful feature scaling which is appealing given our dataset. A scheme of the 

gradient boosting method for our classification problem is presented in Figure 

2. The gradient boosting modelling results for the Greek P&C dataset follow 

in the next section. 

 

 
 

Figure 1. Basic diagram to illustrate the process of “gradient boosting” used 

in this article. 

 

 

 
Figure 2. Number of claims distribution. 
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3. Data 

 

We have taken annual data from a local insurer in Greece, from different 

insurer branch locations across Greece. The data consists of over 60 

“columns” of data. There was no material manipulation of the data before 

training - this is an advantage of using “decision trees” and “gradient 

boosting”. There are around 30 columns of data used for classification. Each 

branch is described by a number of features including meteorological 

conditions, the number of insurances for different types, and in particular the 

number of events with wind or rain during the year. Also, we have the number 

of claims as a feature. Again, these features are for each branch, aggregated 

over a full year. There are no timestamps in the data. 

 

Specifically, the dataset represents the filed insurance claims as a result of 

weather anomalies in different geographic areas in Greece, represented by 

their postcodes, between the years 2012 and 2019 for a specific local insurer. 

There are 5,216 unique postcodes, and in each postcode one or more insurer 

branches can be present. In total, there are six branch categories that handle 

different accidents such as properties, cargo, motors, etc. In total, there are 

36,939 examples. Each such example represents the number of claims in a 

given branch with existing insurance policies, at a given postcode, for a given 

year. For example, in 2017 at postcode 41335 there are two insurance claims 

for damaged properties, one for a motor vehicle and no filed claims for yachts 

or cargo. Figure 2 represents the number of claims from such the dataset. As 

it can be seen, the dataset is highly imbalanced, with 85.5% of the values being 

0 (no claims), 7% with a single claim and 7.5% with two or more claims, see 

Figure 2. In total, the data has 88 such features. (Note that many features are 

one-hot encoded categorical features. For example, the CORINE land cover 

classification introduces 44 unique features.) The postcodes are described by 

a number of features that can be divided into several categories: 

• Geographic features. These features describe the postcode area and 

contain information such as mean, minimum and maximum altitude, 

the length of coast, surface roughness and slope, etc. Also, the 

CORINE land cover codes of the area, see European Environment 

Agency (2022). 

• Meteorological features. Information about the weather conditions 

such as wind and rain intensity, flood vulnerability index, etc. 

• Insurance features. The number and different kinds of insurance 

policies. 
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4. Results 

 

We use the Python framework LightGBM (Ke et al., 2017), which is free and 

open source. It was developed inpart by Microsoft. LightGBM is a gradient 

boosting framework that uses tree based learning algorithms, according to 

their main Github page here: https://github.com/microsoft/LightGBM. For 

more commentary on LightGBM see for example Ke et al. (2017). LightGBM 

contains highly efficient implementations of various gradient boosting 

algorithms for classification and classification tasks. 

 

We divide the data into three subsets using the train, validation, test paradigm 

as follows: 

• Train data. Examples between the years 2012 and 2016, consisting of 

20,143 examples. The data is used to learn a sequence of decision 

trees. 

• Validation data from 2017 and 2018, in total 11,150 examples. This 

dataset is used to validate the performance of the model and avoid 

overfitting. 

• Test data from 2019, in total 5,646 examples. The data is used to 

report the performance of the model on unseen data and simulate the 

behaviour of the model on new data. 

 

 
Figure 3. The train and validation error evolution. Each iteration 

corresponds to an additional decision tree. 
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The model itself outputs predicted probabilities allocating to one of the three 

categories (“0 claims”, “1 claim”, “2+ claims”. An example output could be 

[0.2, 0.7, 0.1] - where the model is inferring this the second category in our 

list ”1 claim”). 

 

We train the model using early stopping on the validation dataset for 

regularization. More precisely, if the loss function (in this case a log loss 

function, called “categorical cross entropy” - see below) has not improved on 

the validation dataset for 50 consecutive iterations, i.e., 50 new decision trees, 

we stop training. The plot depicting the evolution of training and validation 

error is shown in Figure 3. As usual, the loss improves for both datasets for 

some time and then the model starts to overfit the training data. The overall 

accuracy of the model is 0.983. The accuracy only for class 1 and 2, i.e., one 

claim vs. 2 or more claims, is 0.893. In Figure 4 we show the ROC curves and 

the corresponding AUC scores for the three classes. We see that the model is 

highly accurate. In Figure 5 we plot the most important features. As expected, 

the meteorological conditions have the highest impact on the number of 

insurance claims, followed by some policy features, and the type of area. 

 

 

5. Concluding Remarks 

 

Insurers may categorise the impact of climate-related claims due to a single 

issue: a “storm event”. 

 

Trying to understand the influences of each underlying climate-related peril 

can be challenging, in part due to due to complexity to model such a claim as 

accurately, the amount of data it would require to better understand such 

underlying influences, and the cost involved from a business perspective to 

produce such a model. If we could, however, produce a realistic approach for 

insurers to categorise the underlying perils and the influence of each peril, this 

could lead to better pricing and reserving models for an insurer, as well as 

more appropriate policy fees being paid by an insured. Given the complexities 

and potential volumes of data involved, we discussed in this paper an example 

of how machine learning techniques could be used towards this direction. 

Given the complexity of this problem, as a first step, we analysed insurer data, 

using “supervised learning” techniques to categorise if a “storm event” would 

result in a claim, and if so, how many claims. We used a machine learning 

algorithm called “gradient boosting” to categorise the claim as “0 claims”, “1 

claim” and “2+ claims” based on local insurer data from Greece. For future 

research, we can build on the approach and model used in various ways. 

Firstly, we can expand the dataset to incorporate other insurers within Greece 
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and potentially different countries, so as to work towards a more commercial 

solution. Secondly, we could incorporate external weather data at more regular 

intervals so that the model can infer relations between the weather and 

potential for a claim to incur. Thirdly, we could try out other 

algorithms/approaches and use “rank to learning” methods to rank the 

importance of each peril by claim to hence better understand the drivers for 

each claim and hence quantify the financial impact caused by each peril. 

Fourthly, we could expand the model to incorporate larger datasets and move 

to an “unsupervised” solution as per our original goal and move away from 

the open source software of LightGBM to more bespoke solution, which is 

coded from the ground up. 

 

 
Figure 4. The AUC plots for the three classes. 

 

 

 
 

Figure 5. The most important features and their contribution to the 

classifying each example to a given class. (PF stands for policy fee). 
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