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ABSTRACT 

This work focuses on the use of public information sources in the application of relational 
models in insurance companies, for a better understanding of   risks and assisting decision-
making in new sustainability environments. Firstly, we propose using Eurostat's degree of 
urbanization methodology to group motor claims or policies into potentially more 
homogeneous categories in the insurance sector (urban / suburban / rural) for segmentation 
and analysis. Secondly, we analyze how insurance companies can use local weather 
information in conjunction with the degree of urbanization to model the number of motor 
claims in a specific geographic area. Finally, we apply relational models to databases with 
anonymized information on passengers in traffic accidents provided by the Spanish General 
Traffic Directorate for the purpose of better defining the characteristics of the claim based on 
the profile of the people inside the vehicle. It is about knowing, for example, the profile of 
the passengers in vehicles driven by elderly people, also in conjunction with sex and the 
geographical area. Insurance companies know the enormous potential of data analytics and 
must focus on the search for relationships using information that may be dispersed in multiple 
databases, including those that are for public use and that can facilitate the homogenization 
and comparison of results, together to the design of preventive and risk management policies. 
We also include the R codes making them available to the insurance sector and academia for 
use. 
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RESUMEN 

Este trabajo se centra en la utilización de fuentes de información pública en la aplicación de 
modelos relacionales en las entidades aseguradoras, para el mejor conocimiento de las 
características de los riesgos y asistir a la toma de decisiones en nuevos entornos de 
sostenibilidad. Primero, proponemos utilizar la metodología de grado de urbanización de 
Eurostat para agrupar siniestros o pólizas de automóviles en categorías potencialmente más 
homogéneas en el sector asegurador (urbano / suburbano / rural) para su segmentación y 
análisis. Segundo, analizamos como las compañías aseguradoras pueden utilizar información 
climatológica local conjuntamente con el grado de urbanización para modelizar el número de 
siniestros de automóviles en una zona geográfica específica. Finalmente, aplicamos modelos 
relacionales a bases de datos con información anonimizada de pasajeros en accidentes de 
tráfico proporcionadas por la Dirección General de Tráfico de España con el objetivo de definir 
mejor las características de los siniestros en función del perfil de las personas que se 
encuentran dentro del vehículo. Se trata de conocer, por ejemplo, el perfil de los pasajeros 
de vehículos conducidos por personas mayores, también en relación con el sexo y la zona 
geográfica. Las compañías aseguradoras conocen la enorme potencialidad del análisis de 
datos y deben apostar por la búsqueda de relaciones usando información que puede estar 
dispersa en múltiples bases de datos, incluyendo aquella que es de uso público y que puede 
facilitar la homogeneización y comparación de resultados, junto al diseño de políticas 
preventivas y de gestión de riesgos. Incluimos los códigos en R poniéndolos a disposición del 
sector asegurador y de la academia para su uso. 

Palabras clave: Análisis de datos, Modelos relacionales, Sostenibilidad 

1. INTRODUCTION 

Data analysis has been at the core of the insurance industry since its inception. Insurance 
companies are ongoing an arms race to understand and apply advances in data science 
(Denuit et al., 2020; Wüthrich & Merz, 2023). Data science is a field of applied mathematics 
and statistics that extract information based on large amounts of complex data or big data. 
Data volume has exponentially grown in last years in the world. As more and more diverse 
data sources become available to insurance companies, techniques to link different databases 
to extract useful information for the insurance business become more important. However, 
there are cost-effective methods that enhance the understanding and pricing of risks that are 
not fully taken advantage of yet. One of them is the use of relational databases with internal 
private data and public available one.  

In general, a data model is the formal way of expressing data relationships to a database 
management system (DBMS). The relational data model was introduced in 1970 by Edgar 
Frank Codd (1970). This model describes the world as a collection of inter-related tables, 
named relations (Watt & Eng, 2014). Databases that adhere to a relational data model are 
named relational databases. Therefore, a relational database is a database whose logical 
structure is made up of a collection of relations (Harrington, 2016). Relational databases work 
with base tables, i.e., actually stored tables, and virtual tables, which are a product of 
relational operations and only exist in main memory. Their structure is registered in a data 
dictionary or catalogue, which mirror data storage relations. The data within the data 
dictionary are referred to as metadata. 

The aim of this study is to show that insurers have access to alternative data sources that 
are useful in pricing and risk management. We claim that relational models that integrate 
those data sources with internal data can be used by insurers in their risk analysis. There is 
abundant literature that provides interesting insights by combining various data sources with 
a relational model. Different aspects of mobility have been analyzed, all of which are of 
interest to insurance companies. There are several reviews that include research studies that 
have used a relational model to integrate the data. Ziakopoulos and Yannis (2020) wrote a 
literary review of spatial analysis approaches on road safety, where one can find studies that 
combine different data sources such as Liu & Sharma (2018), Moeinaddini et al. (2014) and 
Alarifi et al. (2017), as well as Ziakopoulos (2024) recently published research. In Zheng et 
al. (2021) we can find a review of studies modelling traffic conflicts that combine various data 
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sources, including among others Xie et al. (2019) and Zheng et al. (2019). Finally, Wang et 
al. (2013) examined the impact of traffic and road characteristics, and referenced some 
research studies that combined alternative data sources such as Haynes et al. (2008) and 
Lord et al. (2005).  

To illustrate the usefulness of leveraging public data in combination with private data in a 
relational data model, this paper will show three fields where they can be used for a better 
understanding of risks. The first application focuses on attributing an urbanization degree to 
the claims and/or the policyholders, specifically the Eurostat methodology, in line with 
research that have leveraged ZIP codes to study the relationship between crash 
characteristics and those injured (Clark & Cushing, 2004; Lee et al., 2014; Lerner et al., 
2001). The second application uses climatic information from AEMET (Spanish Meteorology 
Agency) to model the number of claims in a municipality (AEMET, 2024). Finally, we examine 
the characteristics of all occupants inside crashed vehicles, with the focus on the severity of 
the injuries of the passengers involved in a motor crash. Note that occupants are defined as 
all persons who were in the vehicle at the time of the accident, and passengers as the persons 
other than the drivers who were in the vehicle. Our idea is to obtain a more accurate estimate 
of the total bodily injury (BI) cost associated with an accident based on the profile of the 
driver and the expected passengers’ profiles accompanying him.  

This paper is structured into five sections. First, the methodology of relational databases is 
presented. Then, the three proposed applications are discussed. In the first one, we use 
relational data models in spatial analysis, specifically in segmenting geographical locations 
based on the European standard urbanization degree categorization (also considering the 
relevance of the analysis of geographical areas and their population structure). In the second 
application, we show how to use files with georeferencing raster climatic data to model the 
number of claims in a geographical area. Finally, relational databases are presented as a tool 
to link more data sets with the aim of better understanding the characteristics of occupant BI 
(driver plus passengers). The paper ends with the main conclusions on the relevance of using 
relational models in the insurance field. We also include the R codes making them available 
to the insurance sector and academia for use. 

2. RELATIONAL DATABASES 

Methodologically speaking, it is necessary to distinguish different components in a relational 
model, see:  a relation, also named table, defined as a subset of the Cartesian product of a 
list of domains characterized by a name (Wijnen et al., 2019); its columns or attributes; its 
domains, i.e., the set of permissible values a column can contain; and its rows or tuples, 
where each one represents a group of related data values. These relation’s rows and columns 
have some special properties: 

• For columns: each one must have a unique name, its values must be drawn for only one 
domain, and viewing it in any order must not affect the meaning of the data. 

• For rows: there must not be duplicate rows, there can only be one value at the intersection 
of a column and a row, and viewing rows in any order must not be affected the meaning of 
the data. 

Each table row is identified with a primary key, a value that uniquely identifies a specific row, 
stored in a column. If well specified, with unique primary keys and no null keys, only the table 
and column names, and the primary key of the row suffice to retrieve any specific data.  

The relationships between the tables that conform the database can be of three types: one-
to-one, where each row in one table is linked to at most one row in another table; one-to-
many, where a single row in Table A can be related to one or more rows in Table B but each 
row in table B is only related to one row in table A; and many-to-many, where multiple rows 
in one table can relate to multiple rows in another table, using  a third table named junction 
or join table to manage the relationship between the two tables. However, these relationships 
are not mandatory and will not be enforced by the DBMS unless specified. The most common 
relationship type in relational databases is one-to-many. In them, there are two tables (A and 
B), each containing a column with identifier variables from the same domain, one with primary 
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keys, which uniquely identify each row within a table, and the other with foreign keys, which 
link one table to another by referencing a primary key. A foreign key is a column with the 
same primary keys as some table in the database. The relationship DBMS will use the 
relationship by matching data between primary and foreign keys to retrieve associated data, 
i.e., items from other columns. It is important to remark that relational data models place a 
constraint in one-to-may relationships, they require that each non-null foreign key value 
corresponds precisely to an existing primary key value. This is the most important constraint 
because it ensures the coherence of inter-table references. 

To represent data relationship in a relational database we use entity-relationship (ER) 
diagram, which in practice is a diagram that shows relationship types among different tables 
(figure 1). 

 
Figure 1. Entity-relationship diagram in Power BI. Source: Own elaboration. Note: in 
the figure, the different variables codes appear solely for illustrative purposes. 

3. CARTOGRAPHIC LOCATION AND DEGREE OF URBANIZATION IN MOTOR 
INSURANCE 

In European countries, according to Wijnen et al. (2019), the total costs of road crashes are 
equivalent to 0.4–4.1% of GDP. In the case of Spain, as the authors point out, the cost of 
road crashes stands at approximately 1% of the GDP. Moreover, Spanish insurance 
companies have seen their motor vehicle claims’ soar in the last years, as shown by their net 
combined loss ratio (Table 1). 

 
Table 1. Evolution of the Spanish Net Combined Loss Ratio for Motor Third-Party 
liability Q4-2020 to Q4-2023. Source: Own elaboration based on “Boletín de 
Información Trimestral de Seguros y Fondos de Pensiones Cuarto Trimestre 2023”. 
Year 2020 2021 2021 2021 2021 2022 2022 
Quarter 4 1 2 3 4 1 2 
Net Combined LR 
(%) 94 95.6 96.6 98.3 100.1 103.8 100.2 

        
Year 2022 2022 2023 2023 2023 2023  
Quarter 3 4 1 2 3 4  
Net Combined LR 
(%) 100.6 103 104.6 105.7 105.1 107.1 
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The increases in their loss ratios underline the importance of understanding crashes better to 
reestablish profitability in the Motor Third Party Liability insurance. Incorporating additional 
spatial analysis could enhance their analytical process, allow for more geographical-based 
measures and contribute to the improvement of risk selection and pricing. 

The riskiness of a driver is conditioned by the environment where he/she moves (Pljakić et 
al., 2022). Population density and its corresponding infrastructures not only heavily 
determines drivers’ maneuvers and behaviors, but also the expected consequences of their 
mistakes (Abdel-Aty et al., 2013; Bil et al., 2019; Prato et al., 2018; Keeves et al., 2019). 
Several studies have shown that even if urban areas tend to concentrate a bigger proportion 
of crashes, occupants suffer worse injuries in rural areas crashes (Keeves et al., 2019, Peura 
et al., 2015). In Spain, the profile of the driver in rural areas is also different, older driver 
represent a bigger share of the census, according to the Spanish driver census for 2017-
2019. 

The intersection of rurality, rural depopulation and population ageing is important for Spain. 
At the same time, it is one of the European countries with the highest life expectancy, with 
the highest percentage of population living in cities, and the highest percentage of older 
people concentrated in rural areas (Gutiérrez et al., 2023; Casado-Sanz et al., 2019; 
European Commission, 2023). Rural municipalities represent 84% of Spain's surface area but 
only the 16% of the Spanish population lives in rural municipalities. The 25% of the rural 
population is over 65 years old and almost a third of those over 65 are over 80 years old. 
From the point of view of road safety, this context represents a huge challenge when it comes 
to ensuring safe and sustainable mobility in rural areas, which are increasingly depopulated 
and where the incidence of population aging is higher. In Spain, the greatest number of traffic 
accidents occur in urban environments but 52% of traffic fatalities occurs on rural 
environments (Harland et al., 2014). 

Incorporating these structural demographic changes into insurance companies’ models is 
important. However, adding new variables to a model is not trivial. It requires deciding how 
much resources to invest into making adjustments and ensuring accurate categorization. The 
difficulty increases with variables that do not have clear-cut classifications. Insurance 
companies are forced to choose between more variable customization or, when available, 
using standardized criteria. There are situations where opting for homogeneous criteria offers 
certain advantages, it makes market comparisons easier, and enables leveraging public 
available data if matched. In these situations, insurance companies could extract more 
insights from their policy holders and claims if they integrate their own (proprietary) data 
with information accessible from public sources.  

An illustrative example is separating policyholders or claims by urbanization degree, i.e., 
whether it is urban or rural area. Although the use of geographical areas is very common in 
insurance, there is no harmonized widely-used criteria to determine the degree of 
urbanization of a location. Researchers and practitioners from different countries tend to use 
multiple measures (Harland et al., 2014), mostly related to population density or size, with 
different thresholds to determine urbanization and reflect their perspective on the urban – 
rural area dichotomy (Keeves et al., 2019). To ease international comparison and offer 
standardized classifications, Eurostat developed its own methodology (OECD, 2021). This 
European statistical institution defines cities, towns and rural areas based on a combination 
of population size, density and proximity and attributes a classification at the Local 
Administrative Unit (municipalities in the case of Spain). Using this methodology, it’s possible 
to map the level of urbanization across EU member countries, enabling standardized 
comparison among them. 

In Figure 2 we show results of applying the Eurostat's methodology in our country, including 
two maps at the municipal level. The first map indicates urbanization levels, while the second 
uses a logarithmic scale to show vehicle crash numbers involving injured victims in each 
municipality for the 2016-2019 period. Data of the numbers of crashes were provided by the 
Spanish General Traffic Directorate (DGT). The comparison suggests that a higher degree of 
urbanization correlates with an increase in traffic accidents. Mapping different factors can help 
to reveal potential relationship that provide insights into traffic crash dynamics, even helping 
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to predict crash occurrences based on certain criteria and to evaluate the potential correlation 
heterogeneity across different territories. For example, the impact of a factor on the number 
of crashes may vary, as it is the case in the maps of figure 2, where the rural areas (depicted 
in light green) correlate with a different magnitude in the northern and southern halves of 
Spain.   

 

Figure 2. Map of Spanish peninsular municipalities by degree of urbanization 
in 2018 (right) and natural logarithm of the number of motor vehicle crashes 
2016–2019 (left). Source: Cespedes et al. (2024b). Own elaboration. 

The analysis of drivers’ behavior patterns can also be enhanced by combining proprietary 
data with public information, such as that coming from Geographic Information Systems 
(GIS). The number of kilometers traveled influences the risk of accident (Boucher et al., 
2013). Building from the segmentation into urbanization degrees, companies could extract 
the distances between the location of crashes and the residence of their policyholders, to 
study the differences according to the degree of urbanization, by querying distances between 
municipalities by means of the Open Source Routing Machine (OSRM). OSRM is an open-
source routing engine that provides shortest routes in road network. An interface between R 
and OSRM is available by using the OSRM package (Giraud, 2022). Some patterns that 
emerge, for DGT data for the years 2016-2019, are that while the proportion of drivers 
crashing in their municipality of residence is equal to 63.9% in urban areas, it only is 26% in 
rural areas. If we consider drivers that crashed outside their municipality of residence and no 
further than 150 km from their homes, they represent a 30.1% of urban drivers, and 68.7% 
of rural drivers, with similar average distances (urban 32.4 km, rural 32.9 km) and standard 
deviations (urban 31.9 km, rural 29 km) (Cespedes et al., 2024a). 

Using a simply relational data model that matches the postal code of the location of a claim 
or the residence of a driver to the degree of urbanization can give an edge to characterize 
more accurately these risks. Not only it allows companies to know the share of 
urban/suburban/rural drivers in the portfolio, to change their risk appetites and target desired 
proportion, but also to find commonalities in crashes or claims by urbanization degree, such 
that some of them can be bundled and analyzed together by pricing and reserving 
departments. Furthermore, other publicly available data could also be considered, such as 
the meteorology, as shown below, and enrich our understanding. These analyses open up a 
springboard to develop the skills needed to exploit telematics data in the future (Ayuso et al., 
2014). 

4. CLIMATOLOGICAL INFORMATION TO EXPLAIN INSURANCE CLAIMS IN 
MUNICIPALITIES 

The climate of an area can be an important element in explaining the claims for insurance 
companies (Ashley et al., 2015; Eisenberg, 2004; Naik et al., 2016). Some examples in which 
weather may play a key role are motor insurance or home insurance, among others. Most of 
insurers already take meteorological information into account in their analysis of claim 
frequency and severity. In this section we show how insurers may incorporate public 
meteorological information in their claim analysis.  
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In this application we consider the annual number of accidents with victims per municipality 
in Spain for the year 2019. In total, there were 8,131 municipalities with at least 1 accident 
with victims. Figure 3 shows the number of accidents in the Spanish municipalities in the year 
2019. Data are scaled per each thousand inhabitants to be comparable municipalities of 
different population size. 

Figure 3. Number of motor crashes with victims per 
each 1,000 inhabitants in the Spanish municipalities in 
the year 2019. Source: Own elaboration. 

Our objective in the example is to investigate whether weather information can be useful for 
insurers to explain the number of motor accidents with casualties. The accident data of the 
municipalities are adjusted to the number of inhabitants of the municipality. To avoid possible 
variability in the municipal motor accident rate due to the small population size of the 
municipality, we select municipalities with at least 500 inhabitants or more. The size of the 
dataset is now 4,146 Spanish municipalities with more than 500 inhabitants in which at least 
one motor crash with injured victims occurred in the year 2019. Table 3 shows descriptive 
statistics of the numerical variables of the dataset. Note that in this and the next sections we 
follow the definition of injury severity used by the DGT in which a victim is seriously injured 
if at least one day of hospitalization was required. Otherwise, injured victims are classified as 
casualties with slight injuries.1 The degree of urbanization of the municipality following the 
European methodology used in the previous section is considered in the analysis. Table 4 
shows the relative frequency of the degree of urbanization of the municipality (categorical 
variable with three categories). 

  

 

1 See Ayuso et al. (2019, 2020) for applications using the same bodily injury severity classification.   
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Table 3. Descriptive statistics for numerical variables in municipalities with more than 500 
inhabitants. Source: Own elaboration based on DGT data (year 2019) and section 3. 
 Min. 1st Qu. Median Mean 3rd Qu. Max. 
Crashes 0 0.724 1.459 2.035 2.574 33.499 
Involved vehicles 0 1.004 2.179 3.177 3.979 58.313 
Casualties 0 0.906 1.971 2.962 3.702 52.109 
Fatalities 0 0 0 0.083 0 7.005 
Seriously injured casualties 0 0 0 0.291 0.297 16.304 
Slight injured casualties 0 0.724 1.736 2.588 3.299 45.906 
Average age of vehicles (in 
the municipality)  2.004 12.363 13.361 13.247 14.275 17.037 

Population (in thousands)  0.501 1.021 2.334 11.276 6.861 3280.782 
Percentage of male 
population 0.466 0.562 0.590 0.593 0.62 0.780 

 

Table 4. Relative frequency of the degree of urbanization for municipalities with more than 
500 inhabitants. Source: Own elaboration based on DGT data (year 2019) and section 3. 

 
Urban Intermediate Rural 

Degree of urbanization 5.21 26.58 68.21 

 

Now, we incorporate the climatic information of the municipalities in our dataset. We will use 
open data from the Spanish Agency of Meteorology (AEMET). In particular, we will use the 
normal climatological values corresponding to the period 1981-2010 for Spain for different 
climatic variables (AEMET, 2024).  

The climatic variables of municipalities that can be consulted and that may be of interest to 
the insurance sector are: 

 Average maximum daily rainfall (mm). 
 Average annual and monthly accumulated precipitation (mm). 
 Seasonal average accumulated precipitation (mm). 
 Average annual number of days with precipitation greater than or equal to 0.1 mm. 
 Average annual number of days with precipitation greater than or equal to 1 mm.  
 Average annual number of days with precipitation greater than or equal to 10 mm.  
 Average annual number of days with precipitation greater than or equal to 30 mm.  
 Average annual and monthly temperature (ºC). 
 Average annual and monthly minimum temperature (ºC). 
 Average annual and monthly maximum temperature (ºC). 
 Köppen-Geiger climate classification (Kottek et al., 2006). 
 Mean annual number of snow days. 
 Mean annual number of storm days. 
 Mean annual number of fog days. 
 Mean annual number of sunshine hours (Insolation). 

The information available in AEMET is stored in GeoTIFF file format (.tif extension) that allows 
storing georeferenced information in an image file with TIFF format. Each GeoTIFF file 
corresponds to a raster image that refers to a climatological variable and period (monthly, 
annual or seasonal). The list of available files and the meteorological variables can be 
consulted in the appendix of Chazarra et al. (2018). 
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A raster image consists of a matrix of cells (pixels) organized in rows and columns in which 
each cell is represented by a color (Figure 4).  

Figure 4. Example of a raster image. Source: own elaboration.  

In the GeoTIFF files available at AEMET each cell is georeferenced. The images are projected 
according to the geographic coordinate system EPSG: 4326 (WGS 84 - WGS84 - World 
Geodetic System 1984). That is the most commonly used geographic coordinate system (used 
in Google Earth and GSP systems, for instance) and allows the geographic location of each 
cell of the image. The color of the cell represents the information of the value of the 
meteorological variable in that location. The colors of the image cells are defined in RGBA 
(Red, Green, Blue, Alpha) scale. Each parameter (Red, Green, and Blue) defines the intensity 
of the color between 0 and 255. The Alpha parameter represents the opacity/transparency, 
where 0 represents the maximum level of opacity (black), and 255 represents the maximum 
level of transparency. In our application, the alpha parameter would be particularly useful to 
distinguish between cells representing the land of the peninsula (or the island) and those that 
represent the sea. Finally, the GeoTIFF file provides scale information that links the RGBA 
colors of the cells with the values of the meteorological variable of interest.  

To illustrate the use of meteorological information, we display the map of the average 
maximum daily rain precipitation in the 1981-2010 period in Canary Islands in Figure 5. The 
rainfall information was obtained from the GeoTIFF file downloaded from the AEMET website 
(AEMET, 2024). The equivalence between the RGBA space and the interval of the numerical 
values of the meteorological variable is provided at the bottom of the image, as a footnote. 

  

https://desktop.arcgis.com/es/arcmap/latest/manage-data/raster-and-images/what-is-raster-data.htm
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Figure 5. Average maximum daily rainfall (in mm) in 
the Canary Islands for the 1981-2010 period (in RGBA 
space). Source: Map of the AEMET. Scale: [{'Values': 
[140, ''], 'RGBA': ['255', '210', '255', '255']}, {'Values': 
[120, 140], 'RGBA': ['255', '138', '255', '255']}, 
{'Values': [100, 120], 'RGBA': ['162', '23', '253', 
'255']}, {'Values': [80, 100], 'RGBA': ['0', '106', '213', 
'255']}, {'Values': [70, 80], 'RGBA': ['41', '145', '248', 
'255']}, {'Values': [60, 70], 'RGBA': ['130', '191', '253', 
'255']}, {'Values': [50, 60], 'RGBA': ['128', '255', '255', 
'255']}, {'Values': [40, 50], 'RGBA': ['128', '255', '72', 
'255']}, {'Values': [30, 40], 'RGBA': ['201', '253', '130', 
'255']}, {'Values': [20, 30], 'RGBA': ['255', '255', '164', 
'255']}]} 

Figure 5 was plotted downloading and reading the rainfall information from the raster image 
in RGBA space. The next step is to convert the RGBA information into a numerical value of 
the meteorological variable that insurers can incorporate in their insurance claim analysis. To 
achieve it, we previously convert the RGBA scale to the HSV scale. HSV space is a cylindrical-
coordinate representation of points in an RGB color model. HSV stands for hue (type of color), 
saturation (quantity of color to be added), and value (brightness of the saturation of the 
color). Doing it, each color is represented by a single value and the numerical conversion of 
color values to the meteorological values becomes easier. Figure 6 represent the average 
maximum daily rainfall (in mm) in the Canary Islands for the 1981-2010 period after 
converting the color scale in a numerical value. The R code for downloading of the 
georeferencing raster image of the average maximum daily rainfall in Canary Islands and the 
steps to convert the information included in the GeoTIFF file into a numerical value of the 
meteorological variable of interest is provided in the Annex. 

 

Figure 6. Average maximum daily rainfall (in mm) in 
the Canary Islands for the 1981-2010 period (in 
numerical value). Source: Own elaboration from 
GeoTIFF file of AEMET. 
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We carry out the same steps for the raster file containing rain precipitation information in the 
Peninsula and Balearic Islands. Finally, the numerical values of rain precipitations of 
referenced cells representing the Peninsula, the Balearic Islands and Canarian Islands are 
merged in a single file. Now, the information of rain precipitations can be incorporated into 
the database of motor crashes in Spanish municipalities with more than 500 inhabitants. We 
have longitude and latitude coordinates of municipalities, so we assign to the municipality the 
meteorological value of their longitude-latitude coordinates. Table 5 shows descriptive 
statistics for the variable of interest average maximum daily rainfall (mm) in the period 1981-
2010 for the municipalities with more than 500 inhabitants in which motor crashes involving 
victims occurred.  

Table 5. Descriptive statistics of the meteorological variable Average maximum daily rainfall 
(mm) in the period 1981-2010 for municipalities with more than 500 inhabitants. Source: 
Own elaboration. 
 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Rain precipitations 25.00 45.00 55.00 59.58 75.00 150.00 

For illustrative purposes, to demonstrate the explanatory capacity of the meteorological 
information on the number of motor crashes with casualties, a Poisson regression model has 
been fitted. We select as dependent variable the number of motor crashes involving victims 
in Spanish municipalities with more than 500 inhabitants. We include as regressors the 
average age of vehicles in the municipality where the accident took place, the percentage of 
male population in this municipality, the degree of urbanization of the municipality following 
the Eurostat methodology described in the previous section, and the average maximum daily 
rainfall (mm), as calculated in this section. Estimated coefficients are shown in Table 6. The 
variable associated with rain precipitations has an estimated positive coefficient statistically 
significant at 1% significance level. So, the amount of rain precipitations in a municipality 
seems to be positively related with the expected number of motor accidents involving victims 
in the municipality. 

Table 6. Modeling the number of motor crashes involving victims in Spanish municipalities 
with more than 500 inhabitants (Generalized Linear Model-Poisson regression). Note: 
Population (in thousands) is included as offset of the regression model; Null deviance: 45,020; 
Residual deviance: 35,433. 
Variable Coef. Std. Error z value p-value 

Intercept 3.539 0.143 24.767 <0.001 

Average age of vehicles (in the municipality) -0.138 0.003 -52.043 <0.001 

Percentage of male population -3.533 0.283 -12.467 <0.001 

Degree of urbanization – Rural 0.438 0.012 36.489 <0.001 

Degree of urbanization – Urban 0.384 0.009 42.008 <0.001 

Rain precipitations (mm) 0.006 <0.001 39.042 <0.001 

Following with the example, a limitation of the use of Generalized Linear Models is that they 
are not flexible in the specification of the linear predictor (i.e., linear combination of 
parameters and regressors). In that sense, to allow for a nonlinear effect of the regressor 
associated with rain precipitations, we fit a Generalized Additive Model to investigate the 
functional form of the effect of rainfall on the (log) number of traffic accidents (Hastie, 1992). 
A Penalized spline (P −spline) is used to estimate the smooth function associated to the 
rainfall regressor (Eilers & Marx, 1996). The remaining regressors are included as a linear 
combination of parameters and regressors. Estimated coefficients of the linear predictor part 
are now shown in Table 7. 
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Table 7. Modelling the number of motor crashes involving victims in Spanish municipalities 
with more than 500 inhabitants with a P-spline for the rain precipitations (Generalized 
Additive Model-Poisson regression). Note: Population (in thousands) is included as offset of 
the regression model. R-sq.(adj) = 0.896; Deviance explained = 23.2%. 
Variable Coef. Std. Error z value p-value 

Intercept 3,982 0,148 26,835 <0.001 

Average age of vehicles (in the municipality) -0,133 0,003 -48,499 <0.001 

Percentage of male population -3,886 0,291 -13,351 <0.001 

Degree of urbanization – Rural 0,433 0,012 35,825 <0.001 

Degree of urbanization – Urban 0,352 0,009 38,029 <0.001 

The estimated P-spline for the rain precipitations is shown in Figure 7. It can be observed 
that the effect of rainfall on the (log) number of accidents is increasing up to about the 
municipalities with average daily rainfall of 100 mm and then decreases. It is worth 
mentioning that only 3.7% municipalities took a value above 100 mm of average maximum 
daily rainfall. Even if the volume of traffic is reduced on wet days (Keay & Simmonds, 2005), 
the overall effect on crash rates depends on the increase in the relative risk of crash (Black 
et al., 2017). Therefore, the decreasing effect of rain precipitations in the right tail should be 
taken with caution and more analysis would be recommended. 

Figure 7. Estimated P-spline function for 
the rain precipitations to model the 
number of motor crashes with casualties 
in municipalities with more than 500 
inhabitants (Generalized additive model-
Poisson regression). Note: The effective 
degree of freedom of the P-spline (edf) is 
equal to 6.794. 

5. BODILY INJURIES OF ALL OCCUPANTS OF THE CRASHED VEHICLE 

Insurance companies have access to many data sources and can analyze motor claims from 
multiple perspectives. They can consider the characteristics of the location where the crash 
took place, as well as the injuries and characteristics of all occupants of the vehicles involved. 
For claims in which vehicles with passengers are involved, important information is lost when 
they only pay attention to aggregated costs and do not consider the variations coming from 
their injuries, especially when there is a recurrent pattern in the driver-passenger(s) profiles. 
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Given that crashes represent the subset of policies of the company’s portfolio where the risk 
has materialized, crash reports are useful, not just to understand the claim, but also to infer 
traits of policyholders that condition their risk. For instance, understanding the heterogeneity 
in passenger injuries could help claims and reserving teams to have a more tailored opening 
reserves that do not distort in excess their quarterly average costs estimation. 

 
Vehicles with passengers involved in injury crashes represent a relevant proportion of the 
total number of vehicles involved in injury crashes. In this section we use the dataset of motor 
crashes involving victims in Spanish roads in the period 2017-2019. According to the DGT, 
for the years 2017 to 2019, 19.6% of passenger cars that were involved in a crash in which 
at least one person was injured had passengers additional to the driver (Table 8). Given that 
the vehicle involved in the crash has at least one passenger, mostly has 1 passenger (65.7%), 
followed by 2 (20.4%) and 3 (10.1%) passengers. If attention is paid to their proportion of 
injuries according to their severity (Table 9), the proportion of serious and fatal injuries by 
number of passengers is very stable, around 2.1% and 0.5% correspondingly, while slight or 
no injuries change notably, as illustrated by the rejection of the equal distribution of injuries 
by passenger number in the Pearson’s Chi-squared test. The more passengers there are in a 
car, the less likely they are to suffer slight injuries. This illustrates that it is important to 
consider the injury heterogeneity in the passenger vehicles to analyze the insured risk as a 
whole, both in terms of pricing and reserving. Understanding the characteristics of individuals 
with whom drivers tend to travel is a key issue, and from our knowledge, little treated in the 
automobile insurance context. 
 
Table 8. Passenger frequency in motor vehicles. Source: Own elaboration from DGT databases 
2017-2019. 

Passengers (driver excluded) Relative Frequency (%) Relative Frequency ex 0 (%) 

0 80.4  

1 12.9 65.7 
2 4.0 20.4 
3 2.0 10.1 
4 0.7 3.5 
5 0.1 0.3 

 

Table 9. Proportion of injury types by number of passengers in passenger vehicles (%). 
Source: Own elaboration from DGT databases 2017-2019. 

 Number of passengers (driver excluded) 

Injury Type 1 2 3 4 
None 36.9 41.2 46.7 45.8 
Slight 60.5 56.2 50.8 51.0 

Serious 2.2 2.1 2.1 2.7 
Fatal 0.5 0.4 0.5 0.5 

Pearson’s Chi-squared test P-value < 2.2 * e-16 

Rather than solely evaluating the total cost per vehicle for the claim, a more nuanced analysis 
can be conducted. It involves estimating the conditional expected cost of the claim based on 
both the driver’s characteristics and those of its expected passengers. For instance, if a crash 
occurred knowing that the vehicle had only one passenger alongside the driver, an initial 
reserve for bodily injury could be established based on the expected probabilities of severity 
levels according to the number of passengers (Table 9). Alternatively, if the company wanted 
to estimate the total expected costs of bodily injury claims, it could incorporate the expected 
probability that insured drivers will be accompanied by one or more passengers (Table 8) and 
the estimated severity of injuries in each case (Table 9). Matching all the tables can be easily 
done with a relational database, where keys are matched to relate passengers or all occupants 
with crash characteristics, enabling data manipulation and analysis. The composition inside 
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the car varies and multiple combinations may be considered. For instance, the analysis could 
be made by gender of driver and passengers, by different age groups, or by geographical 
area, linking with research presented at previous sections. 

The diversity of passenger profiles is easily appreciated in the data, as illustrated for example 
by Tables 10 and 11, based on DGT data. In Table 10, the relative frequency of the gender 
of passenger by injury type and gender of the driver can be seen; e.g., of all passengers with 
fatal injuries and a male driver, 46% were men, while the remaining 54% were women. In 
this table, it can be seen that women tend to have relatively better outcomes with a woman 
driver except for fatalities, where they represent a smaller proportion of all fatalities. 
Statistical independence between the driver-passenger gender pairing and the passenger’s 
injury type using the Pearson’s chi-square test for independence returned a p-value <0.01. 

Table 10. Passenger injury by driver gender (%). Source: Own elaboration from DGT 
databases 2017-2019. 

Gender Passenger Injury 
Driver Passenger None Slight Serious Fatal 
Man Man 44.1 35.8 40.5 46.0 
Man Woman 55.9 64.2 59.5 54.0 

      
Gender Passenger Injury 

Driver Passenger None Slight Serious Fatal 
Woman Man 49.9 38.3 43.6 36.9 
Woman Woman 50.1 61.7 56.4 63.1 

      

In Table 11, the relative frequency of the pairing of a driver and passenger by age and number 
of passengers in the crashed vehicles can be seen. Statistical independence between the 
driver-passenger age pairing and the passenger’s number using the Pearson’s chi-square test 
for independence returned a p-value <0.01. For vehicles with 1 passenger, 87% of them were 
driven by a person aged 18-64 years old, while the remaining 13% were accompanied by a 
driver older than 64 years old. Also, the more passengers there are in the vehicle, the bigger 
the proportion of drivers aged 18-64 years old: 93.9% for 2 passengers, 94.6% for 3, and 
96% for vehicles with 4 passengers. Therefore, the first suggestion an observer would 
consider is that most passengers, regardless of age, go on the road with drivers younger than 
65 years old. However, if passengers are grouped by age and the relative frequency by driver 
age is considered, as presented in Table 12, we get a different result. Older adult passengers 
go on the road with drivers older than 64 years old in a significant proportion. In 68.5% of 
vehicles with 1 passenger and a passenger aged 65 or more years, the driver is also and older 
adult. In vehicles with 2,3, and 4 passengers, if there is an older adult passenger, the 
likelihood of having an older driver are 35.6%, 43.3%, and 29.2% correspondingly.  

Table 11. Relative frequencies (%) of the passenger - driver age by number of passengers. 
Source: Own elaboration from DGT databases 2017-2019. 

  Passengers 
Driver age Passenger age 1 2 3 4 
[18, 65) [18, 65) 82.9 89.2 91.2 92.6 
[18, 65) [65,) 4.1 4.7 3.4 3.4 
[65,) [18, 65) 4.1 3.5 2.8 2.6 
[65,) [65,) 8.9 2.6 2.6 1.4 
 Total 100% 100% 100% 100% 
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Table 12. Relative frequencies (%) of the passenger - driver age by number of passengers 
and driver age. Source: Own elaboration from DGT databases 2017-2019. 

  Passengers 
Driver age Passenger age 1 2 3 4 
[18, 65) [18, 65) 95.3% 96.2% 97.0% 97.3% 
[65,) [18, 65) 4.7% 3.8% 3.0% 2.7% 

 Total 100% 100% 100% 100% 
[18, 65) [65,) 31.5% 64.4% 56.7% 70.8% 
[65,) [65,) 68.5% 35.6% 43.3% 29.2% 

 Total 100% 100% 100% 100% 
      

 

To exemplify how to combine the different databases we are using in this paper, we select 
now passenger cars with 5 or less occupants. The insurer knows some drivers’ characteristics, 
such as residence and gender. If the Eurostat methodology is applied, we obtain, in Table 13, 
the following relative frequency of driver gender-residence-age combinations.  

Table 13. Relative Frequencies (%) of the gender, residence degree of urbanization, and age 
of driver in this segmentation. Source: Own elaboration. 
Driver Gender Residence Urb. Degree Age group Rel. Freq. (%) 

Men Rural     [18, 65) 10.1% 
Men Rural     [65,) 2.0% 
Men Urban     [18, 65) 46.2% 
Men Urban     [65,) 6.6% 

Women Rural     [18, 65) 6.0% 
Women Rural     [65,) 0.3% 
Women Urban     [18, 65) 27.4% 
Women Urban     [65,) 1.3% 

    
 
Now, we consider the proportion of occupants by each combination. It can be seen that 
proportions for the different groups seem to be different (Table 14). 

Table 14. Proportion of vehicles with a determined number of occupants by driver with a 
combination of gender, residence urbanization degree, and age group. Source: Own 
elaboration. 

   Number of vehicle’s occupants  
Driver 
Gender 

Residence Urb. 
Degree Age group 1 2 3 4 5 Total 

Men Rural     [18,65) 67.9% 20.7% 6.6% 3.5% 1.2% 100% 
Men Rural     [65,) 68.4% 26.9% 3.3% 1.1% 0.3% 100% 
Men Urban     [18,65) 72.5% 17.8% 5.8% 3.0% 0.9% 100% 
Men Urban     [65,) 68.3% 26.1% 3.6% 1.6% 0.3% 100% 

Women Rural     [18,65) 72.2% 18.3% 6.4% 2.2% 0.8% 100% 
Women Rural     [65,) 78.0% 18.2% 3.1% 0.4% 0.2% 100% 
Women Urban     [18,65) 77.6% 14.9% 4.9% 2.0% 0.6% 100% 
Women Urban     [65,) 79.0% 16.2% 3.1% 1.4% 0.3% 100% 

  Total 73.2% 18.1% 5.4% 2.6% 0.8% 100% 
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The possibilities that open up in terms of segmenting risks and optimizing pricing and 
reservation processes are evident. Thanks to relational models and the combination of 
databases, risk characterization can now be done with a much higher level of detail. 

6. CONCLUSION 

The access to data has exponentially grown in last years and more diverse data sources 
become available to insurers. Techniques to link different databases to extract useful 
information become more important in pricing and risk management. As a previous step to 
delving into complex techniques, it is crucial to explore the interrelation of data to understand 
better the behaviour of our policyholders. We have observed there are cost-effective uses of 
resources already available to insurance companies, such as relational databases, but to 
leverage them, they must be creative and experiment to find useful relationships for them. 
Relational databases serve as a valuable tool in exploring and extending it to all areas of 
insurance companies. 
 
There are potential applications all over the industry, combining in-house data with public 
available data can give them an edge, as evidenced in this paper by using spatial analysis 
and attributing a standard urbanization degree, or considering climatological variables such 
as rain. In both cases, we were able to add variables that helped us to grasp better the 
heterogeneity in our data, allowing for more adjusted general analysis and the possibility to 
split the database into more homogeneous segmentations. Also, the use of standardized 
categorizations can help companies to compare themselves against industry benchmarks, 
making comparisons faster and easier, by avoiding arbitrary specifications. Let us highlight 
the relevance of these analyzes in the new Sustainability framework, where factors such as 
climate change or population relocation take on a leading role. 
 
Nevertheless, relational databases with only in-house data can be advantageous too, as long 
as companies are creative and curious, as illustrated by the study of the passengers’ 
heterogeneity of the same vehicle. In this study we use motor crash data from the DGT but 
similar analysis can be done by insurers with in-house data. Depending on the needs of the 
company, the depth of analysis can vary, but we have seen that there is room for conditional 
analysis, that some important variables have known-values beforehand, such as gender, age 
or residence urbanization degree, that can help to forecast crashes’ outcomes and estimate 
its variability based on past experience. 
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9. APPENDIX 

R Software was used in the applications (R Core Team, 2024). R code used to plot Figures 3 
and 4 is provided below.  

# Download georeferenced data. 
# AEMET (2024), Normal climatological values, Agencia Estatal de Meteorología 
https://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos [Access: June 12, 
2024]. 
 
# Description: download of all climatic variables for Peninsula and Balearic Islands, and Canary Islands 
is available. 
# SGR: EPSG:4326 (WGS84 - World Geodetic System 1984). 
# Download unit: each raster image corresponds to a variable and period (monthly, annual or seasonal). 
# Format: GeoTIFF (.tif) 
# Additional information: the "SCALE" field provides the correspondence between the RGBA color scale and 
the range of values of the meteorological variable. 
 
# Chazarra Bernabé, A., Flórez García, E., Peraza Sánchez, B., Tohá Rebull, T.,  Lorenzo Mariño, B., 
Criado Pinto, E., Moreno García, J.V., Romero Fresneda, R. y Botey Fullat, R. (2018) Mapas climáticos de 
España (1981-2010) y ETo (1996-2016) Ministerio para la Transición Ecológica, Agencia Estatal de 
Meteorología, Madrid 
# Allows to identify file name with climatological variable and image of peninsula or canary islands.  

 
getRversion() 

## [1] '4.3.0' 

# Packages 
library(raster) #read tif file 

library(rgdal) #from source file (tar.gz). Used to obtain scale information 

library(ggplot2) 

library(grDevices) #convert RGB (red/green/blue) values in HSV (hue/saturation/value).  

To read the raster file and consult contained information. 
  
# Working directory 
setwd("~\\anales\\clima\\descarga_clima") 
 
# Rain precipitations in Canary Islands 
 
# Information of the scale and other infromation 
rgdal::GDALinfo("down_vn8110pxdmww13c_20170512.tif")  

Canarias <- stack("down_vn8110pxdmww13c_20170512.tif") #create a multi-layer raster object 
df <- as.data.frame(Canarias, xy= TRUE) #data frame includes longitude, latitude and RGBA information 
names(df)<-c("long","lat","R","G","B","A") #change name 

To plot Figure 5. 
 
dfclean<-df[df$A>100,] #values less than 100 are removed (cells indicating the sea) 
 
Fig3<-ggplot(data = dfclean, aes(x = long, y =lat))+                    
  geom_raster(aes(fill=rgb(R,G,B, maxColorValue = 255))) + 
  scale_fill_identity()+xlab("Longitude")+ylab("Latitude") 
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To convert RGBA values in numerical values of the meteorological variable of interest. 
 
# Scale in RGBA space 
 
escala<-matrix(c( 
255, 210, 255, 255, 
255, 138, 255, 255, 
162, 23, 253, 255, 
0, 106, 213, 255, 
41, 145, 248, 255, 
130, 191, 253, 255, 
128, 255, 255, 255, 
128, 255, 72, 255, 
201, 253, 130, 255, 
255, 255, 164, 255), ncol=4, byrow=T) 
 
# Convert to HSV space 
escalhsv<-t(rgb2hsv(r=escala[,1],g=escala[,2],b=escala[,3]))  
 
# Function that assigns discrete numerical value of the climatic variable to the HSV color value. 
 
Meteo<-function(A){ 
C<-t(rgb2hsv(A[,1], A[,2] , A[,3]))  
valor<-cbind(C,NA) 
colnames(valor)[4]<-"val" 
 
valor<-as.matrix(as.data.frame(valor)) 
cond1<-I(valor[,1]<=0.10) 
valor[(cond1==T),4]<-1 
 
cond2<-I(valor[,1]>0.10 & valor[,1]<=0.22) 
valor[(cond2==T),4]<-25 
 
cond3<-I(valor[,1]>0.22 & valor[,1]<=0.28) 
valor[(cond3==T),4]<-35 
 
cond4<-I(valor[,1]>0.28 & valor[,1]<=0.49) 
valor[(cond4==T),4]<-45 
 
cond5<-I(valor[,1]>0.49 & valor[,1]<=0.55) 
valor[(cond5==T),4]<-55 
 
cond6<-I(valor[,1]>0.55 & valor[,1]<=0.65) 
cond6A<-I(valor[,2]>0.83) 
cond6B<-I(valor[,2]>0.48 & valor[,2]<=0.83) 
cond6C<-I(valor[,2]<=0.48) 
valor[(cond6==T)&(cond6A==T) ,4]<-85 
valor[(cond6==T)&(cond6B==T),4]<-75 
valor[(cond6==T)&(cond6C==T),4]<-65 
 
cond7<-I(valor[,1]>0.65 & valor[,1]<=0.76) 
valor[(cond7==T),4]<-90 
 
cond8<-I(valor[,1]>0.76 & valor[,1]<=0.83) 
valor[(cond8==T),4]<-110 
 
cond9<-I(valor[,1]>0.83 & valor[,1]<=1) 
cond9A<-I(valor[,2]<=45) 
cond9B<-I(valor[,2]>45) 
valor[(cond9==T)&(cond9A==T),4]<-150 
valor[(cond9==T)&(cond9B==T),4]<-130 
valor[valor[,3]<0.4,4]<-NA  # Values of v close to zero (black) are considered missing 
return(valor) 
} 
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To plot Figure 6. 
 
A<-cbind(dfclean[, 3:5]) # matrix with color values  
lluvia<-Meteo(A)  
 
dfclean$Lluvia<-lluvia[,4] # numerical value 
 
Fig4<- ggplot(data = dfclean, aes(x = long, y =lat))+                    
  geom_raster(aes(fill=Lluvia), show.legend = T) + 
  scale_fill_identity()+xlab("Longitude")+ylab("Latitude")+ scale_fill_gradientn(colours = 
terrain.colors(3))+ labs(fill = "Rainfall") 
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