
  4ª Época, Número 30, Año 2024/131-146 
                                                                     DL M-3160-1961 – ISSN 0534-3232 – eISSN 2531-2308 

 

DOI 10.26360/2024_07 

CATASTROPHIC RISK MANAGEMENT: STOCHASTIC HYBRID 
MODEL TO CALCULATE THE LOSS INDEX TRIGGER FOR 

CATASTROPHE BONDS (CAT BONDS). ADJUSTMENT USING 
EVOLUTIONARY STRATEGIES 

LA GESTIÓN DEL RIESGO CATASTRÓFICO: MODELO 
HÍBRIDO ESTOCÁSTICO PARA CALCULAR EL ÍNDICE DE 

PÉRDIDAS DESENCADENANTE DE LOS CAT BONDS. AJUSTE 
MEDIANTE ESTRATEGIAS EVOLUTIVAS 

 

María José Pérez-Fructuoso 
Universidad a Distancia de Madrid (UDIMA). Departamento de Economía y Administración de 
Empresas. Collado-Villalba, España. 
ORCID: https://orcid.org/0000-0002-3252-1631 
mailto:mariajose.perez@udima.es 
(Corresponding author) 

Antonio Berlanga de Jesús 
Universidad Carlos III de Madrid. Grupo Inteligencia Artificial Aplicada (GIAA). Computer 
Science Department. Getafe, España. 
ORCID: https://orcid.org/0000-0002-5564-399X 
aberlan@ia.uc3m.es 
 
Date of reception: September 29th 2024 
Date of acceptance: December 1st 2024 

ABSTRACT 

Purpose: This paper develops a stochastic model to calculate the loss index trigger for 
catastrophe bonds as alternative instruments for the management of major insured risks, 
such as natural catastrophe. 

Methodology: The underlying loss index of catastrophe bonds is the aggregate catastrophe 
losses reported before the end of certain period. The catastrophe severity is defined as the 
sum of two random variable: the reported loss amount and incurred-but-not-yet-reported 
loss amount, and the central hypothesis is that the latter decreases proportionally to a linearly 
increasing function up to a certain time and constant thereafter, called the hybrid claim 
reporting rate. Randomness in the reporting process is represented by a geometric Brownian 
motion in the claim reporting rate. The validity of the proposed model is evaluated by 
estimating its parameters using machine learning techniques (specifically, evolutionary 
strategies, ES).  

Findings: The results shows that the model accurately captures the uneven behavior of the 
claim reporting process over time and therefore correctly describes the catastrophic claims 
reporting process. 

Originality: The model proposed allows for an easy calculation of catastrophic loss indexes, 
thus facilitating the pricing of loss index-triggered Cat bonds. This translates into better 
catastrophe risk management for both insurance and reinsurance companies, as well as for 
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those companies that diversify their portfolios with this type of financial instruments. The 
simplicity of the presented model facilitates parameter estimation and simulation. 

Keywords: Catastrophic risk management, Catastrophe bonds, Reported loss amount, 
Incurred-but-not-yet-reported loss amount, Hybrid claim reporting rate, Evolutionary 
strategies 

RESUMEN 

Objetivo: Este artículo desarrolla un modelo estocástico para calcular el índice de pérdidas 
desencadenante de los bonos catastróficos como instrumentos alternativos de gestión de 
grandes riesgos asegurados, como las catástrofes naturales. 

Metodología: El índice de pérdidas subyacente de los bonos catastróficos es el total de 
pérdidas por catástrofes declaradas antes del final de un periodo determinado. La cuantía 
total de la catástrofe se define como la suma de dos variables aleatorias: cuantía declarada 
de siniestros y cuantía de siniestros pendiente de declarar y se supone que esta variable 
disminuye proporcionalmente a una función linealmente creciente hasta un determinado 
momento y constante a partir de entonces, denominada tasa híbrida de declaración de 
siniestros. La aleatoriedad en el proceso de declaración se representa mediante un 
movimiento browniano geométrico en la tasa de declaración de siniestros. La validez del 
modelo propuesto se evalúa estimando sus parámetros mediante técnicas de aprendizaje 
automático (en concreto, estrategias evolutivas, ES). 

Resultados: Los resultados muestran que el modelo captura con precisión el comportamiento 
desigual del proceso de declaración de siniestros a lo largo del tiempo describiendo 
correctamente el proceso de declaración de siniestros catastróficos. 

Originalidad: El modelo permite calcular fácilmente los índices de siniestralidad catastrófica, 
facilitando así la tarificación de los Cat bonds. Esto se traduce en una mejor gestión del riesgo 
catastrófico tanto para aseguradoras y reaseguradoras, como para aquellas empresas que 
diversifican sus carteras con este tipo de instrumentos financieros. La simplicidad del modelo 
facilita la estimación de parámetros y la simulación. 

Palabras clave: Gestión del riesgo catastrófico, Bonos sobre catástrofes, Cuantía declarada 
de siniestros, Cuantía de siniestros pendiente de declarar, Tasa de declaración de siniestros 
mixta, Estrategias evolutivas 

1. INTRODUCTION 

Over the last decades, there has been a growing tendency in the repercussion of natural 
catastrophes such as hurricanes, earthquakes, floods, among others. This is due to many 
factors and, despite some people don’t agree, most of them caused by human race. That 
climatic change is increasing the frequency of catastrophes seems evident, but it’s not the 
only problem we have to confront. Human society is growing uncontrollable and disorganized. 
While the first world has some comfort, that only signify a short percentage of the total 
population, the rest of people live following the rules the first world imposes. They produce 
what we want, buy what we throw and grow as we let them. These are the main reasons why 
they live in densely build up areas. All these facts suppose that when a catastrophe occurs, 
the consequences for the world are each time more sever as much in terms of human lives 
and in terms of economic losses. In 2022 alone, global natural catastrophe losses were $132 
billion in insured damages (AON, 2023) and caused more than 12,000 deaths (Our world in 
data, 2024). 

Before 1992, insurance companies were limited to paying the amount of damage caused by 
catastrophes (Polacek, 2018). But that year, a series of major catastrophes occurred in a 
short period of time, which collapsed the system, making it impossible for the conventional 
catastrophe insurance system to cover catastrophic events. 

It was then that the Chicago Board of Trade launched CAT futures and CAT options to hedge 
against catastrophes (Board of Trade of the City of Chicago, 1992). These derivative financial 
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instruments have as their underlying a catastrophe loss index and allow insurance companies 
to assume the risk of catastrophic events and reinsure the damages caused by catastrophes. 
These insurance linked derivatives have been evolving and currently catastrophe bond issues 
are the form of securitization that has been most developed and used by the insurance market 
in recent years. 

Cat bonds are debt instruments that provide the insurance industry with access to a new 
source of risk hedging through the capital markets. (Pérez-Fructuoso, 2005). They are highly 
profitable and although their structure is like that of traditional bonds, their performance is 
conditional on the occurrence of a certain triggering event, the parameters of which are fixed 
in the issue. These bonds are sponsored by insurance companies, reinsurers, governments, 
or other institutions that cede part or all their catastrophe risk to a Special Purpose Vehicle 
(SPV). In return, the SPV writes a traditional reinsurance policy with the sponsor and seeks 
financing (by issuing bonds) in the capital market, which in turn acts as a counterparty to the 
reinsurance agreement. 

The funds obtained from the bond issue and the reinsurance premium are invested by the 
SPV in short-term, high-return assets. These assets are deposited in a collateral account, 
which guarantees the transaction and generates sufficient resources to meet the risks covered 
by the reinsurance and to pay coupons to investors. The profits generated in this account are 
exchanged for LIBOR, with a swap counterparty that is highly valued by rating agencies. 
Through this swap, bonds are converted into floating rate securities so that interest rate risk 
is largely eliminated. During the bond's life, the periodic interest paid by the SPV to investors 
is obtained from the combination of two components: the premiums paid by the sponsor for 
reinsurance coverage and the LIBOR yield generated by the bond's principal, which is 
guaranteed by the swap counterparty. Then, at maturity, if the catastrophic event covered 
by the contract does not occur, the principal is returned to investors as with other fixed 
income investments. However, if the bond triggering event occurs, investors will lose the 
interest and principal of the investment or part of it depending on the structure of the bond 
and the terms of the reinsurance contract. 

2. OBJECTIVES 

The most complicated aspect of creating a catastrophe bond is defining what triggers the 
capital loss. There are basically four types of triggers: indemnity, industry loss ratios, 
parametric and modeled loss ratios. And of these, industry loss ratios are the second most 
important, accounting for 19,9% of total issuance until November 2024 (22.4% of total 
issuance during 2023) (Artemis, 2024). 

The modeling of these loss ratios to price catastrophe bonds has been discussed in a variety 
of scientific papers. The scientific literature reviewed uses geometric Wiener processes to 
model either the reported loss amount or the catastrophe loss index. This means that the 
intensity of reported loss grows exponentially over time. If Wiener processes are also 
combined with Poisson processes to represent the occurrence of new catastrophes, this 
intensity of reported loss becomes discontinuous because of the jumps generated by the 
Poisson process. However, empirical evidence indicates that at the beginning, immediately 
after the occurrence of the catastrophe, many claims are reported, i.e., the intensity of 
reporting is high, and as time goes by the intensity of claims associated with the catastrophe 
decreases until it is cancelled when there are no more claims to report. Therefore, the 
objective of this work is to adequately represent this reported loss amount to obtain more 
accurate loss index values and consequently lower losses for the issuers of these instruments 
and more realistic prices for the investors.  

2.1. Literature Review: Related Work and Research Framework 

Several authors have investigated the insurance-linked derivatives valuation. The method 
usually employed is the development of pricing models based on the hypothesis of geometric 
Brownian motion, to systematize the instantaneous reporting claims evolution, and to 
incorporate the possibility of major catastrophes occurring through Poisson processes. 
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Cummins and Geman (1995) pricing of the first generation of catastrophe pricing of the first 
generation of catastrophe, Cat futures and Cat options, traded at the Chicago Board of Trade. 
They defined the loss index as the sum of the claims associated with each catastrophe and 
used a geometric Brownian motion to represents the randomness of the claims reporting 
process, and a Poisson process that incorporates the jumps in the claim process due to the 
occurrence of new catastrophes. Geman and Yor (1997), follow a similar approach but use 
the diffusion process with jumps to directly model the loss rate of Property Claim Services 
(PCS) options. Aase (1999) develop a valuation model of catastrophe futures when the loss 
index follows a stochastic process containing jumps of random claim sizes at random time 
points of accident occurrence. This model is a particular case of the model created by 
Embrechts and Meister (1997) which represents the behavior of the catastrophic loss index 
through a mixture of compound Poisson processes and a random loss frequency. Baryshnikov, 
Mayo and Taylor (2001), using continuous trading and risk neutrality, price the catastrophe 
bond using a double compound Poisson process to capture the different characteristics of 
catastrophe dynamics. Burnecki and Kukla (2003) apply the results 
of Baryshnikov, Mayo and Taylor (2001) to calculate non-arbitrage prices of a zero-coupon 
and coupon CAT bond. Muermann (2003) introduces the concept of actuarial consistency and 
derives a representation of the prices of non-arbitrage catastrophe derivatives (Cat futures 
and Cat options) written on an underlying loss index that is modeled as a compound Poisson 
process. Loubergé, Kellezi and Gilli (1999) pricing a loss index triggered cat bond applying 
the catastrophe option pricing model developed by Cummins and Geman (1995). Lee and Yu 
(2002) develop a contingent claim model to price a CAT bond through geometric Brownian 
motion. This model incorporates stochastic interest rates and considers moral hazard, basis 
risk and default risk. Biagini, Bregman and Meyer-Brandis (2008) value catastrophe options 
and describe the index using an inhomogeneous compound Poisson process for the loss period 
and use an inhomogeneous exponential Levy process to re-estimate the index during the 
development period and up to maturity. 

Jaimungal and Wang (2006) analyze the pricing of catastrophic put options under stochastic 
interest rates with losses generated by a compound Poisson process. Asset prices are modeled 
through a jump-diffusion process which is correlated to the loss process. To evaluate these 
catastrophe options Wang (2016) employ a compound doubly stochastic Poisson process with 
lognormal intensity to describe accumulated losses and assume the volatility varies 
stochastically. Jarrow (2010) use a pricing methodology based on the reduced form models 
used to price credit derivatives. Nowak and Romaniuk (2013) apply TSIR models if the 
occurrence of the catastrophe does not depend on the financial market’s behavior. Zong-
Gang and Chao-Qun (2013) derive a bond pricing formula in a stochastic interest rates 
environment with the losses following a compound nonhomogeneous Poisson process. Braun 
(2011) proposes a catastrophic swap pricing model representing the occurrence of 
catastrophes through a doubly stochastic Poisson process (Cox process) with a mean-
reverting Ornstein-Uhlenbeck intensity. Lai, Parcollet and Lamond (2014) calculate the price 
of a catastrophe bond from a jump-diffusion process representing catastrophes, a three-
dimensional stochastic process to represent the exchange rate, domestic and foreign interest 
rates, and the hedging cost for the currency risk. 

Pérez-Fructuoso (2008) and Pérez-Fructuoso (2009) developed a new model for calculating 
the catastrophe loss index, whose value is the sum of the reported loss amount for each 
event. This variable is calculated as the difference between the total catastrophe’s severity 
and the key variable in the model named the incurred but not yet reported claims amount 
which is driven by a geometric Brownian motion with a constant claims reporting rate. 

To develop a more precise expression of the catastrophic loss ratio, Pérez-Fructuoso (2016) 
develops an alternative model whose central hypothesis is that the incurred but not yet 
reported claims amount decreases proportionally to an exponential function, called the 
asymptotic claims reporting rate. The dynamics of this decrease is represented by a geometric 
Brownian motion.  
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Finally, and with the same objective as in the previous case, Pérez-Fructuoso (2017), models 
the decreasing linear dynamics of incurred but not yet reported claims amount, by means of 
an additive Brownian process or Ornstein-Uhlenbeck process. 

Finally, Pérez-Fructuoso (2022) makes a comparison of the three models mentioned above. 
With the available data, it can be concluded that Ornstein-Uhlenbeck model is the one that 
fits better the real-life claims reporting process. However, we have also seen that the 
asymptotic model fits well the first two weeks after the catastrophes occurred. 

3. METHODOLOGY 

3.1. Catastrophe loss index definition 

A catastrophe loss index can be defined as the quotient between the total losses from 
catastrophes occurred over the period [0,𝑇𝑇] (risk period) and a constant value 𝑝𝑝, whose 
definition depends upon the kind of index to be employed. The index value at maturity 𝑇𝑇′, 
𝐿𝐿𝐿𝐿(𝑇𝑇′), with 𝑇𝑇′ ≥ 𝑇𝑇,  is defined as:  

𝐿𝐿𝐿𝐿(𝑇𝑇′) = 𝐿𝐿(𝑇𝑇′)
𝑝𝑝

       (1) 

where 𝐿𝐿(𝑇𝑇′) is the total claims reported in 𝑇𝑇′ for all catastrophes occurring during the risk 
period. 

𝐿𝐿(𝑇𝑇) is a random variable that depends on the following risk factors: 

- The number of catastrophes, 𝑁𝑁(𝑇𝑇), occurring during the risk period, [0,𝑇𝑇]. 
- The moment of time 𝜏𝜏𝑗𝑗 when the catastrophe 𝑗𝑗 occurs, for 𝑗𝑗 = 1, … ,𝑁𝑁(𝑇𝑇) and 𝜏𝜏𝑗𝑗 ∈ [0,𝑇𝑇].  
- The severity of each catastrophic event 𝐾𝐾𝑗𝑗, for 𝑗𝑗 = 1, … ,𝑁𝑁(𝑇𝑇). 
- The reported loss process behavior, 𝑆𝑆𝑗𝑗(𝑡𝑡), representing the reported loss amount at 

time 𝑡𝑡 associated with the catastrophe 𝑗𝑗, for 𝑗𝑗 = 1, … ,𝑁𝑁(𝑇𝑇) and 𝑡𝑡 ∈ �𝜏𝜏𝑗𝑗,𝑇𝑇′�. 
 
Under these assumptions, the numerator of the catastrophe loss index can be calculated as: 

𝐿𝐿(𝑇𝑇′) = ∑ 𝑆𝑆𝑗𝑗(𝑇𝑇′)𝑁𝑁(𝑇𝑇)
𝑗𝑗=1        (2) 

3.2. Modelling hypotheses 

To obtain the value of (1), we can assume some hypotheses for our modelling.  

It is well known in probability theory that; a Poisson process is a stochastic process that 
counts the number of events that happen in a certain period [0,𝑇𝑇]. Therefore, we assume that 
𝑁𝑁(𝑇𝑇) is a Poisson process,  

𝑁𝑁(𝑇𝑇)~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆) 

where λ is the average number of catastrophic events per period [0,𝑇𝑇]. The time between two 
different events in a Poisson process has an exponential distribution with the same parameter. 
Then, for our modelling:  

𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗~𝐸𝐸𝐸𝐸𝑝𝑝(𝜆𝜆) 

If 𝐾𝐾𝑗𝑗 is the total amount of the catastrophe 𝑗𝑗 and 𝑆𝑆𝑗𝑗(𝑡𝑡) is for the reported loss amount at time 
𝑡𝑡, we define 𝑅𝑅𝑗𝑗(𝑡𝑡) as the incurred-but-not-yet-reported (IBNRL) loss amount at time 𝑡𝑡 
associated to the catastrophe 𝑗𝑗. Thus, 

𝑆𝑆𝑗𝑗(𝑡𝑡) = 𝐾𝐾𝑗𝑗 − 𝑅𝑅𝑗𝑗(𝑡𝑡) 

and the numerator of the catastrophe loss index (1) becomes: 

𝐿𝐿(𝑇𝑇′) = ∑ �𝐾𝐾𝑗𝑗 − 𝑅𝑅𝑗𝑗(𝑇𝑇′)�𝑁𝑁(𝑇𝑇)
𝑗𝑗=1         (3) 



Pérez-Fructuoso, M., Berlanga de Jesús, A. 

136 

In the following section, we develop the model that allows us to obtain an expression of 
𝑅𝑅𝑗𝑗(𝑡𝑡) to calculate the reported loss amount, and therefore the numerator of the catastrophe 
loss index triggering Cat Bonds. We consider the occurrence of a single generic catastrophe, 
𝐾𝐾, occurring at moment 𝜏𝜏 ∈ [0,𝑇𝑇], and we assume that its claims claim reporting process is 
𝑆𝑆(𝑡𝑡), and 𝑅𝑅(𝑡𝑡) is its occurred but not yet reported loss process. 

3.3. Formulation model 

We define catastrophe severity as the sum of two random variables, 

𝐾𝐾 = 𝑆𝑆(𝑡𝑡) + 𝑅𝑅(𝑡𝑡)      (4) 

were 𝑅𝑅(𝑡𝑡) represents the incurred-but-not-yet-reported loss (IBNRL) amount at time 𝑡𝑡 
associated to the catastrophe occurred in 𝜏𝜏 and 𝑆𝑆(𝑡𝑡) stands for the reported loss amount at 
time 𝑡𝑡 related to a single catastrophe occurred in 𝜏𝜏. 

Once a catastrophe of severity 𝐾𝐾 has occurred in 𝜏𝜏, the claim reporting process associated 
with this single catastrophe is initiated lasting until the end of the maturity period. Empirical 
evidence shows that the intensity of claims reporting would seem to be greatest just after the 
occurrence of the catastrophe and decreases with time. 

Then, the instantaneous claim reporting process is represented by a differential equation that 
describes the increase of reported loss amount proportional to the incurred-but-not-yet-
reported loss amount, the main variable of the formal model, 

𝑑𝑑𝑆𝑆(𝑡𝑡) = 𝛼𝛼(𝑡𝑡 − 𝜏𝜏) ∙ 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑡𝑡    (5) 

were 𝛼𝛼(𝑡𝑡 − 𝜏𝜏) is a real-value function named claim reporting rate function. 

By differentiating equation (5) results, 

𝑑𝑑𝑆𝑆(𝑡𝑡) = −𝑑𝑑𝑅𝑅(𝑡𝑡)            (6) 

and by substituting (6) into equation (5), the differential equation that describes the evolution 
of 𝑅𝑅(𝑡𝑡) is obtained: 

𝑑𝑑𝑅𝑅(𝑡𝑡) = −𝛼𝛼(𝑡𝑡 − 𝜏𝜏) ∙ 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑡𝑡      (7) 

Equation (7) shows that the incurred-but-not-yet-reported loss amount in 𝑡𝑡 decreases with 
time according to the claim reporting rate function. 

In order to capture the irregular behavior of the claim reporting process, we introduce a 
Wiener process (Brownian motion) into equation (7). This irregularity in the claim reporting 
process depends on the IBNRL amount. While there is still much to declare, the irregularity 
of the declarations is high. However, it decreases as the IBNRL amount does it too. To reflect 
this behavior, we will add a Wiener process with intensity 𝜎𝜎𝑅𝑅(𝑡𝑡), which is called a geometric 
Brownian motion. The result of adding it into our model (7) is the following stochastic 
differential equation,  

𝑑𝑑𝑅𝑅(𝑡𝑡) = −𝛼𝛼(𝑡𝑡 − 𝜏𝜏) ∙ 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎 ∙ 𝑅𝑅(𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑(𝑡𝑡)   (8) 

where 𝛼𝛼(𝑡𝑡 − 𝜏𝜏) is the claim reporting rate function that represents the process’ drift, 𝜎𝜎 is a 
constant value that represents the process’ volatility and 𝑑𝑑𝑡𝑡 is a standard Wiener process 
associated to the catastrophe. 

A necessary condition for our modelling lies in the fact that 𝜎𝜎 must be a low value. Otherwise, 
if 𝜎𝜎 is large enough, the claim reporting rate might become positive and then the IBNRL 
amount will also grow, unlike our initial assumption.  

Applying Itô’s Lemma (Friedman (1975); Malliaris and Brock (1991); Arnold (1974)) in 
equation (8), we obtain the expression for the incurred-but-not-yet-reported loss amount, 
𝑅𝑅(𝑡𝑡):  
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𝑅𝑅(𝑡𝑡) = 𝐾𝐾 ∙ exp �−∫ 𝛼𝛼(𝑃𝑃)𝑑𝑑𝑃𝑃𝑡𝑡−𝜏𝜏
0 − 𝜎𝜎2

2
∙ (𝑡𝑡 − 𝜏𝜏) + 𝜎𝜎 ∙ 𝑑𝑑(𝑡𝑡 − 𝜏𝜏)�      (9) 

 
with the following boundary conditions: 

- Initial boundary conditions: if 𝑡𝑡 = 𝜏𝜏 then 𝑅𝑅(𝑡𝑡) = 𝐾𝐾, the incurred-but-not-yet-reported 
loss amount is the catastrophe severity. 

- Final boundary condition: if 𝑡𝑡 → ∞ then 𝑅𝑅(𝑡𝑡) = 0, the catastrophe incurred loss is 
reported and, obviously, the incurred-but-not-yet-reported loss amount is zero. 

 
From the relation defined between 𝑅𝑅(𝑡𝑡) and 𝑆𝑆(𝑡𝑡) defined in equation (4), we obtain 𝑆𝑆(𝑡𝑡) as 
follows: 

𝑆𝑆(𝑡𝑡) = 𝐾𝐾 ∙ �1 − exp �−∫ 𝛼𝛼(𝑃𝑃)𝑑𝑑𝑃𝑃𝑡𝑡−𝜏𝜏
0 − 𝜎𝜎2

2
∙ (𝑡𝑡 − 𝜏𝜏) + 𝜎𝜎 ∙ 𝑑𝑑(𝑡𝑡 − 𝜏𝜏)��  (10) 

 
Symmetrically to the incurred-but-not-yet-reported loss amount, the boundary conditions for 
the reported loss amount are: 

- Initial boundary conditions: if 𝑡𝑡 = 𝜏𝜏 then 𝑆𝑆(𝑡𝑡) = 0, the reported loss amount is zero. 
- Final boundary condition: if 𝑡𝑡 → ∞ then 𝑆𝑆(𝑡𝑡) = 𝐾𝐾, the reported loss amount es the 

catastrophe severity. 
 
Notice that is straightforward to see that if 𝜎𝜎 = 0 we draw as a result the expression for both 
the incurred-but-not-yet-reported loss amount and the reported loss amount in a 
deterministic model: 

𝑅𝑅(𝑡𝑡) = 𝐾𝐾 ∙ exp �−∫ 𝛼𝛼(𝑃𝑃)𝑑𝑑𝑃𝑃𝑡𝑡−𝜏𝜏
0 � and 𝑆𝑆(𝑡𝑡) = 𝐾𝐾 ∙ �1 − exp �−∫ 𝛼𝛼(𝑃𝑃)𝑑𝑑𝑃𝑃𝑡𝑡−𝜏𝜏

0 ��        (11) 
 
When the claim reporting rate is defined in a hybrid form, we assume that this rate is 
increasing up to a certain point in time, which we symbolize as 𝑡𝑡𝑚𝑚, and thereafter this rate 
remains constant at the level 𝛼𝛼 until the claims reporting process ends: 

𝛼𝛼(𝑃𝑃) = �
𝛼𝛼𝑚𝑚
𝑡𝑡𝑚𝑚
∙ 𝑃𝑃 0 ≤ 𝑃𝑃 ≤ 𝑡𝑡𝑚𝑚

𝛼𝛼𝑚𝑚 𝑃𝑃 > 𝑡𝑡𝑚𝑚
    (12) 

3.4. Model parameters estimation through evolutionary strategies 

In proposed model to represent the claim process, the claim reporting rate is the variable 
that should be calculated for each set of real data. The model of claim reporting rate is defined 
through three parameters (𝛼𝛼𝑚𝑚,𝜎𝜎, 𝑡𝑡𝑚𝑚). Thus, the global optimization procedure must 
simultaneously adjust all of them. The main goal of the global optimization problem is 
summarized in the following definition (Törn, 1991): 
  

Given a function:𝑓𝑓:𝑀𝑀 ⊆ ℜ𝑛𝑛 → ℜ,𝑀𝑀 ≠ ∅,  
 
for 𝐸𝐸 ∈ 𝑀𝑀 the value 𝑓𝑓∗ ≔ 𝑓𝑓(𝐸𝐸∗) > −∞ is a global minimun, iff: ∀𝐸𝐸 ∈ 𝑀𝑀:𝑓𝑓(𝐸𝐸∗) ≤ 𝑓𝑓(𝐸𝐸) 
 
Then 𝐸𝐸∗ is a global minimum point, 𝑓𝑓  is called objective function, and the set 𝑀𝑀 is called the 
feasible region. In this case, the global optimization problem has a unique restriction: the 
claim reporting rate must be positive. This restriction is included in the codification and all 
individuals are processed to become feasible ones. Then, despite this restriction, the solutions 
space does not have infeasible regions.  
 
Evolutionary Algorithms are the term used to describe a broad set of algorithms that draw 
inspiration from the biological process of natural selection. Examples of evolutionary 
algorithms include genetic algorithms, genetic programming, evolutionary strategies, and 
differential evolution.  A notable feature that explains their success when applied to 
optimization problems is their ability to strike an appropriate balance between exploration 
and exploitation during the search process. Evolutionary Algorithms combine characteristics 
of both classifications of classical optimization techniques, volume-oriented and path-oriented 
methods. Volume-oriented methods (Monte-Carlo strategies, clusters algorithms) apply the 
searching process scanning the feasible region while path-oriented methods (pattern search, 
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gradient descent algorithms) follow a path in the feasible region. A definition of a restricted 
search space of finite volume and the starting point is required to volume-oriented and path-
oriented methods respectively. 
 
Evolution strategies (ES) developed by Rechenberg (1971) and Schwefel (1981), have been 
traditionally used for optimization problems with real-valued vector representations. As 
Genetic Algorithms (GA) this are heuristics search techniques based on the building block 
hypothesis. Unlike GA, however, the search is basically focused on the gene mutation. This is 
an adapting mutation based on the likely the individual represents the problem solution. The 
recombination also plays an important role in the search, mainly in adapting mutation. ES are 
techniques widely used (and more appropriated than GA) in real-values optimization 
problems. ES offer practical advantages facing difficult optimization problems (Fogel, 1997). 
These advantages are: its conceptual simplicity, broad applicability, potentiality to use 
knowledge and hybridize with other methods, implicit parallelism, robustness to dynamic 
changes, capability for self-optimization and capability to solve problems that have no known 
solutions. A general ES is defined as an 8-tuple (Bäck, 1996): 
  

𝐸𝐸𝑆𝑆 = (𝐿𝐿,𝛷𝛷,𝛺𝛺,𝛹𝛹, 𝑃𝑃, 𝜄𝜄, 𝜇𝜇, 𝜆𝜆) 
where:  

- 𝐿𝐿 = (�⃗�𝐸, �⃗�𝜎, �⃗�𝛼) = ℜ𝑛𝑛 × ℜ+
𝑛𝑛𝜎𝜎 × [−𝜋𝜋,𝜋𝜋]𝑛𝑛𝛼𝛼 is the space of individuals, i.e. the parameters of the 

model, 𝛼𝛼𝑚𝑚,𝜎𝜎 and 𝑡𝑡𝑚𝑚,  
- 𝑃𝑃𝜎𝜎 ∈ {1, . . . ,𝑃𝑃} represents the dimension of the vector of standard deviations of the 

parameters to be adjusted and 𝑃𝑃 is the number of parameters to be fitted, 
- 𝑃𝑃𝛼𝛼 ∈ �0, (2𝑛𝑛−𝑛𝑛𝜎𝜎)(𝑛𝑛𝜎𝜎−1)

2
� is the dimension of the vector of rotation angles, 

- 𝛷𝛷: 𝐿𝐿 → ℜ = 𝑓𝑓 is the fitness function,  
-  𝛺𝛺 = �𝑚𝑚{𝜏𝜏,𝜏𝜏′,𝛽𝛽}: 𝐿𝐿𝜆𝜆 → 𝐿𝐿𝜆𝜆� ∪ �𝑟𝑟{𝑟𝑟𝑟𝑟,𝑟𝑟𝜎𝜎,𝑟𝑟𝛼𝛼}: 𝐿𝐿𝜇𝜇 → 𝐿𝐿𝜆𝜆� are the genetic operator, mutation o 

recombination operators,  
- 𝛹𝛹(𝑃𝑃) = 𝑃𝑃 �𝑃𝑃 ∪ 𝑚𝑚{𝜏𝜏,𝜏𝜏′,𝛽𝛽}�𝑟𝑟{𝑟𝑟𝑟𝑟,𝑟𝑟𝜎𝜎,𝑟𝑟𝛼𝛼}(𝑃𝑃)�� is the process to generate a new set of individuals, 
- 𝑃𝑃 is the selection operator and 
- 𝜄𝜄 is the termination criterion. 

 

In this work, the definition of the individual has been simplified: the rotation angles 𝑃𝑃𝛼𝛼 have 
not been considered, 𝑃𝑃𝛼𝛼 = 0.  

The mutation operator generates new individuals as follows:  

𝜎𝜎𝑖𝑖′ = 𝜎𝜎𝑖𝑖 ∙ 𝑒𝑒𝐸𝐸𝑝𝑝(𝜏𝜏′ ∙ 𝑁𝑁(0,1) + 𝜏𝜏 ∙ 𝑁𝑁(0,1)) 

�⃗�𝐸′ = �⃗�𝐸 + 𝜎𝜎𝑖𝑖′ ∙ 𝑁𝑁��⃗ �0�⃗ , 1� 

ES has several formulations, but the most common form is (𝜇𝜇, 𝜆𝜆)-ES, where 𝜆𝜆 > 𝜇𝜇 ≥ 1, (𝜇𝜇, 𝜆𝜆) 
means that 𝜇𝜇-parents generate 𝜆𝜆-offspring through recombination and mutation in each 
generation. The best 𝜇𝜇 offspring are selected deterministically from the 𝜆𝜆 offspring and replace 
the current parents. Elitism and stochastic selection are not used. ES considers that strategy 
parameters, which roughly define the size of mutations, are controlled by a “self-adaptive” 
property of their own. An extension of the selection scheme is the use of elitism; this 
formulation is called (𝜇𝜇 + 𝜆𝜆)-ES. In each generation, the best 𝜇𝜇-offspring of the set 𝜇𝜇-parents 
and 𝜆𝜆-offspring replace current parents. Thus, the best solutions are maintained through 
generation. The computational cost of (𝜇𝜇, 𝜆𝜆)-ES and (𝜇𝜇 + 𝜆𝜆)-ES formulation is the same. 
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4. ANALYSIS OF RESULTS 

4.1. Solution of the proposed model for a hybrid claim reporting rate 

In the case where the claim reporting rate is defined in a hybrid form, we calculate the 
integral of equation (9) in two different situations: 
  

1) If the valuation moment, 𝑡𝑡, is previous than the moment of claim reporting rate 
change, 𝜏𝜏 ≤ 𝑡𝑡 ≤ 𝜏𝜏 + 𝑡𝑡𝑚𝑚, then: 

∫ 𝛼𝛼(𝑃𝑃)𝑑𝑑𝑃𝑃𝑡𝑡−𝜏𝜏
0 = ∫ �𝛼𝛼𝑚𝑚

𝑡𝑡𝑚𝑚
∙ 𝑃𝑃� 𝑑𝑑𝑃𝑃𝑡𝑡−𝜏𝜏

0 = 𝛼𝛼𝑚𝑚
𝑡𝑡𝑚𝑚
∙ 𝑠𝑠

2

2
�
0

𝑡𝑡−𝜏𝜏
= 𝛼𝛼𝑚𝑚∙(𝑡𝑡−𝜏𝜏)2

2𝑡𝑡𝑚𝑚
  (13) 

 
By substituting this result into equation (9), the incurred-but-not-yet-reported loss 
amount at 𝑡𝑡 results, 

𝑅𝑅(𝑡𝑡) = 𝐾𝐾 ∙ exp �− �𝛼𝛼𝑚𝑚
2𝑡𝑡𝑚𝑚

∙ (𝑡𝑡 − 𝜏𝜏) + 𝜎𝜎2

2
� ∙ (𝑡𝑡 − 𝜏𝜏) + 𝜎𝜎 ∙ 𝑑𝑑(𝑡𝑡 − 𝜏𝜏)�   (14) 

 
and the reported loss amount until 𝑡𝑡 is: 

𝑆𝑆(𝑡𝑡) = 𝐾𝐾 ∙ �1 − exp �− �𝛼𝛼𝑚𝑚
2𝑡𝑡𝑚𝑚

∙ (𝑡𝑡 − 𝜏𝜏) + 𝜎𝜎2

2
� ∙ (𝑡𝑡 − 𝜏𝜏) + 𝜎𝜎 ∙ 𝑑𝑑(𝑡𝑡 − 𝜏𝜏)��        (15) 

2) If the valuation moment, 𝑡𝑡, is after than the moment of claim reporting rate change, 
𝑡𝑡 > 𝜏𝜏 + 𝑡𝑡𝑚𝑚, then: 

∫ 𝛼𝛼(𝑃𝑃)𝑑𝑑𝑃𝑃𝑡𝑡−𝜏𝜏
0 = ∫ �𝛼𝛼𝑚𝑚

𝑡𝑡𝑚𝑚
∙ 𝑃𝑃� 𝑑𝑑𝑃𝑃𝑡𝑡𝑚𝑚

0 + ∫ 𝛼𝛼𝑚𝑚𝑑𝑑𝑃𝑃
𝑡𝑡−𝜏𝜏
𝑡𝑡𝑚𝑚

= 𝛼𝛼𝑚𝑚
𝑡𝑡𝑚𝑚
∙ 𝑠𝑠

2

2
�
0

𝑡𝑡𝑚𝑚
+ 𝛼𝛼𝑚𝑚 ∙ 𝑃𝑃]𝑡𝑡𝑚𝑚

𝑡𝑡−𝜏𝜏 = 𝛼𝛼𝑚𝑚 ∙ (𝑡𝑡 − 𝜏𝜏) − 𝛼𝛼𝑚𝑚∙𝑡𝑡𝑚𝑚
2

 (16) 

 
By substituting this result into equation (9), the incurred-but-not-yet-reported loss 
amount at 𝑡𝑡 results, 

𝑅𝑅(𝑡𝑡) = 𝐾𝐾 ∙ exp �− �𝛼𝛼𝑚𝑚 + 𝜎𝜎2

2
� ∙ (𝑡𝑡 − 𝜏𝜏) + 𝜎𝜎 ∙ 𝑑𝑑(𝑡𝑡 − 𝜏𝜏)� ∙ exp �𝛼𝛼𝑚𝑚∙𝑡𝑡𝑚𝑚

2
�       (17) 

 
and the reported loss amount until 𝑡𝑡 is: 

𝑆𝑆(𝑡𝑡) = 𝐾𝐾 ∙ �1 − exp �− �𝛼𝛼𝑚𝑚 + 𝜎𝜎2

2
� ∙ (𝑡𝑡 − 𝜏𝜏) + 𝜎𝜎 ∙ 𝑑𝑑(𝑡𝑡 − 𝜏𝜏)� ∙ exp �𝛼𝛼𝑚𝑚∙𝑡𝑡𝑚𝑚

2
�� (18) 

 
𝑅𝑅(𝑡𝑡) follows a log-normal distribution, where normal distribution parameters associated are: 

- If 𝜏𝜏 ≤ 𝑡𝑡 ≤ 𝜏𝜏 + 𝑡𝑡𝑚𝑚, then: 

ln𝑅𝑅(𝑡𝑡) ~𝑁𝑁�ln𝐾𝐾 − �
𝛼𝛼𝑚𝑚 ∙ (𝑡𝑡 − 𝜏𝜏)

2𝑡𝑡𝑚𝑚
+
𝜎𝜎2

2
� ∙ (𝑡𝑡 − 𝜏𝜏);𝜎𝜎2 ∙ (𝑡𝑡 − 𝜏𝜏)� 

- If 𝑡𝑡 > 𝜏𝜏 + 𝑡𝑡𝑚𝑚, then: 

ln𝑅𝑅(𝑡𝑡) ~𝑁𝑁�ln𝐾𝐾 − �𝛼𝛼𝑚𝑚 +
𝜎𝜎2

2
� ∙ (𝑡𝑡 − 𝜏𝜏) +

𝛼𝛼𝑚𝑚 ∙ 𝑡𝑡𝑚𝑚
2

;𝜎𝜎2 ∙ (𝑡𝑡 − 𝜏𝜏)� 

4.2. Catastrophe loss index calculation 

As noted in section 3.1, the catastrophe loss ratio is defined by equation (1). For the case of 
catastrophe bonds, the indices used as triggers for indemnity payments are based on the 
accumulated losses to maturity associated with a single catastrophe. Therefore, we define 
the Bernoulli variable or indicator variable, 𝛿𝛿, which is 0 if the catastrophe covered in the 
issue does not occur or 1 otherwise and the loss ratio is rewritten as: 
 

𝐿𝐿𝐿𝐿(𝑇𝑇′) = 𝛿𝛿 𝑆𝑆(𝑇𝑇′)
𝑝𝑝

= �
0 si 𝛿𝛿 = 0
𝑆𝑆(𝑇𝑇′)
𝑝𝑝

= 𝐾𝐾−𝑅𝑅(𝑇𝑇′)
𝑝𝑝

si 𝛿𝛿 = 1   (19) 

 
When the claim reporting rate is defined through a hybrid model, the catastrophe loss index 
at maturity is given by the following expression: 
 

𝐿𝐿𝐿𝐿(𝑇𝑇′) = 𝐿𝐿𝐿𝐿(𝑡𝑡𝑚𝑚) + 𝐿𝐿𝐿𝐿(𝑇𝑇′ − 𝑡𝑡𝑚𝑚) = 
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= 𝛿𝛿 ∙ 𝐾𝐾
𝑝𝑝
∙

⎣
⎢
⎢
⎢
⎡�1 − exp �−�𝛼𝛼𝑚𝑚∙(𝑡𝑡𝑚𝑚−𝜏𝜏)

2𝑡𝑡𝑚𝑚
+ 𝜎𝜎2

2
� ∙ (𝑡𝑡𝑚𝑚 − 𝜏𝜏) + 𝜎𝜎 ∙ 𝑑𝑑(𝑡𝑡𝑚𝑚 − 𝜏𝜏)�� +

+�1 − exp �𝑒𝑒−�𝛼𝛼𝑚𝑚+
𝜎𝜎2
2 �∙�𝑇𝑇

′−𝑡𝑡𝑚𝑚�+𝜎𝜎∙𝑊𝑊� 𝑇𝑇′−𝑡𝑡𝑚𝑚� ∙ 𝑒𝑒
𝛼𝛼𝑚𝑚∙𝑡𝑡𝑚𝑚

2 ��
⎦
⎥
⎥
⎥
⎤
                (20) 

4.3. Adjusting claims reporting rate, volatility and moment 𝒕𝒕𝒎𝒎 

In this work, we have a mathematical model that must be fitted to real data samples obtained 
from real catastrophes. Then, the problem could be defined as: "search for parameters that 
define a function that minimizes the error for each real data sample". 

The proposed model follows equation (15) and (18), in both cases three parameters 
(𝛼𝛼𝑚𝑚,𝜎𝜎 and 𝑡𝑡𝑚𝑚) should be calculated to obtain the minimum distance to the real data 
distribution. The fitness function (evaluation of everyone over each series) is clearly the sum 
of the squared errors over the real data set but, in this case, due to the stochastic nature of 
the function, each individual must be evaluated by calculating the average value of the error 
over a large number of experiments repetitions. In this work, 10,000 evaluations have been 
performed to eliminate the randomness introduced by the Wiener process. 

The type of recombination used in this work is the discrete recombination and the strategy 
(𝜇𝜇 + 𝜆𝜆)-ES was used to select the individual to the next generation.  

The algorithms used in this work have been developed by the authors in the R language and 
with the support of the cmaesr package (Bossek, 2021). The execution has been carried out 
on several computers Intel Core i5 4.8GHz with Windows 11 operating system. We have three 
computers with these characteristics to carry out the work. We performed 10,000 evaluations 
in each city to have the data available in one week. This number of evaluations is more than 
enough to ensure that the average value obtained is significant. 

So, considering that we have data associated with seven cities and that each city has an 
execution time of 10000 evaluations of 1 week, the total execution time has been 3 weeks 
(first week three cities, second week three cities and third week the remaining city). 

The parameters of the ES are summarized in Table 1. Besides, different runs were achieved 
changing the random seed1. 

Table 1: Setting of exogenous parameters of the ES. Source: Own elaboration. 
Parameter Value 
Initial standard deviations  Randomly generated in range 

[0.0;3.0] 
Number of rotation angles 0 
Parent population 20 
Offspring population size 80 
Termination criterion Number of generation step= 500 
 

The real data to adjust model is related with floods occurred in several Spanish regions: Alcira 
(10/01/1991), San Sebastián (06/23/1992), Barcelona 1 (09/14/1999), Barcelona 2 
(10/20/2000), Murcia (10/20/2000), Valencia (10/20/2000) and Zaragoza (10/20/2000). The 
data are temporal series of week incurred-but-not-yet-reported loss. For each disaster, we 
apply the optimization procedure for the model.

 

1 Seeds are generated sequentially for a linear congruent random number generator. Careful choice of sedes is not 
necessary. 
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Week Alcira 
(10/01/1991) 

San 
Sebastián 

(06/23/1992) 

Barcelona 1 
(09/14/1999) 

Barcelona 2 
(10/20/2000) 

Murcia 
(10/20/2000) 

Valencia 
(10/20/2000) 

Zaragoza 
(10/20/2000) 

 

0 100 100 100 100 100 100 100  
1 84.94 88.08 90.68 85.95 88.46 97.54 60.11  
2 53.65 36.04 68.38 61.73 75.55 80.18 56.91  
3 34.96 23.67 50.68 34.98 48.7 60.15 38.3  
4 24.05 16.68 41.42 24.07 31.13 43.16 29.79  
5 18.86 12.29 31.58 14.05 21.41 31.96 23.4  
6 13.36 9.94 25.43 12.41 15.78 27.55 19.15  
7 10.53 8.72 19.56 8.52 11.27 19.64 18.09  
8 8.04 7.76 16.68 5.23 8.71 15.29 15.43  
9 6.94 6.8 13.28 5.23 8.24 14.76 15.43  
10 5.23 5.78 10.54 5.08 6.57 14.7 10.64  
11 4.08 5.18 8.15 3.44 5.36 11.06 6.91  
12 3.71 4.33 6.8 3.59 4 8.46 3.72  
13 3.56 3.45 6.13 2.24 3.38 6.98 3.72  
14 2.6 2.69 3.41 1.2 2.6 6.21 2.66  
15 1.75 1.81 3.41 0.6 2.8 5.17 2.66  
16 1.3 1.59 2.61 0.6 2.29 4.22 1.6  
17 0.77 1.39 1.81 0.6 2.25 3.5 1.6  
18 0.29 1.16 1.26 0.45 2.14 2.72 1.6  
19 0 0.96 0.56 0.45 1.67 2.26 0  
20  0.76 0 0.45 1.28 1.88   
21  0.45  0.45 1.09 1.69   
22  0.28  0 0.93 1.61   
23  0.2   0.66 0.9   
24  0.17   0.66 0.54   
25  0.11   0.62 0.36   
26  0.06   0.16 0.19   
27  0   0 0   

Table 2: Incurred-but-not-yet-reported loss amount weekly in (%): Own elaboration 
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These data have been elaborated by the Technical and Reinsurance Department of the 
Consorcio de Compensación de Seguros (a public institution dependent on the Spanish 
Ministry of Economic Affairs and Digital Transition) to be applied exclusively in this research. 
The way in which they are presented, as a percentage of the weekly reported loss amount, 
means that they are not affected by the passage of time. That is, the data expressed as a 
percentage allows avoiding the time gap for its use at different moments in time. The amount 
of the catastrophe could be higher today, but the percentage declared in the first week would 
remain approximately the same (mainly because the population, public infrastructure and 
housing have not been modified in the affected areas after reconstruction). 

Table 3 shows global results over the set of catastrophes for proposed model with evolutionary 
strategies, the accumulative quadratic error for each catastrophe and for the model. For each 
catastrophe, the model has different parameters (the best parameters for this real data 
distribution). Finally, the accumulative, the average and the standard deviation of the error 
for all catastrophes are shown.  

Table 3: Global results. Source: Own elaboration. 

Alcira (10/01/1991) 1059.89 
San Sebastián (06/23/1992) 1060.43 

Barcelona 1 (09/14/1999) 537.39 
Barcelona 2 (10/20/2000) 472.15 

Murcia (10/20/2000) 624.73 
Valencia (10/20/2000) 1147.68 

Zaragoza (10/20/2000) 687.35 
Accumulative Quadratic Error 5589.61 

Average Error 798.52 
Standard Deviation 281.69 

 
For each event, the optimization procedure described above is applied. Table 4 shows the 
parameters of the proposed model associated with each of the catastrophes considered: 

Table 4: Parameters. Source: Own elaboration. 

 𝛼𝛼𝑚𝑚 𝜎𝜎 𝑡𝑡𝑚𝑚 
Alcira (10/01/1991) 0.440 0.096 0.002 
San Sebastián 
(06/23/1992) 

0.241 0.053 0.733 

Barcelona 1 (09/14/1999) 0.248 0.039 0.042 
Barcelona 2 (10/20/2000) 0.317 0.042 0.190 
Murcia (10/20/2000) 0.058 0.018 0.684 
Valencia (10/20/2000) 0.027 0.029 0.658 
Zaragoza (10/20/2000) 0.168 0.011 0.530 

5. DISCUSSION 

In most of the previous models analyzed, a geometric Wiener process is assumed to model 
the reported loss amount. This assumption implies an exponential growth, on average, of the 
instantaneous claim reporting rate within the interval considered. In many models (e.g. 
Cummins and Geman (1995); Lee and Yu (2002); Wang (2016); Zong-Gang and Chao-Qun 
(2013); Lai, Parcollet and Lamond (2014)), this rate is further assumed to be discontinuous 
by introducing the jump process due to major catastrophes in the definition of 𝑆𝑆(𝑡𝑡); in others 
models (e.g., Geman and Yor (1997); Aase (1999); Embrechts and Meister (1997); 
Muermann (2003); Biagini, Bregman and Meyer-Brandis (2008); Jaimungal and Wang 
(2006); Braun (2011)), the introduction of major catastrophes is done directly in the definition 
of the loss ratio. This aggregate approach to the behavior of the claims’ reporting intensity 
does not correspond to a uniform distribution of claims occurrence within a specific interval, 
as it is difficult to understand that the aggregation process is exponential and not linear. 
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A geometric Brownian motion is also considered to model the behavior of the Cat Bond loss 
index trigger. However, unlike previous models, it uses the Wiener process to explain the 
decreasing dynamics of the incurred-but-not-yet-reported loss amount, rather than to 
describe the evolution of the reported loss amount, which is obtained by subtraction of the 
former from the total severity of the specified catastrophe. The loss index is then the reported 
loss amount multiplied by an indicator which varies according to the likelihood of the 
catastrophic event occurring, thus notably simplifying both the calculation of the index and 
the estimation of the parameters. 

On the other hand, it is important to note that the model proposed here is limited to 
determining the numerator of the catastrophe loss rate without going into the valuation or 
pricing expressions for catastrophe bonds. However, the price of the catastrophe bond at time 
𝑡𝑡 of its trading period can be calculated by applying general option pricing theory (see, for 
example, Loubergé, Kellezi and Gilli (1999); Baryshnikov, Mayo and Taylor (2001); Burneki 
and Kukla (2003) or Nowak and Romaniuk (2013)). Likewise, the methodology used by 
Jarrow (2010) could also be used to value the bond, so that in this case it would only be 
necessary to determine the probability of occurrence of the catastrophe and the time structure 
of the LIBOR interest rates, values that are normally calculated by specialized modeling 
agencies. 

This article is an extension of previous works developed by Pérez-Fructuoso (2008), Pérez-
Fructuoso (2016) and Pérez-Fructuoso (2017). All of them are based on a growth of the 
reported loss amount proportional to the incurred-but-not-yet-reported loss amount, which 
is the fundamental modeling variable. The proportionality function, called the claim reporting 
rate, is the one that varies according to the proposed model. In Pérez-Fructuoso (2008), the 
claim reporting rate is assumed to be constant. In Pérez-Fructuoso (2016) it is defined 
asymptotically, i.e., it is assumed to tend to a constant value. Specifically, at the beginning 
of the process it takes the value zero to, subsequently, grow until it reaches the constant 
value. Finally, in Pérez-Fructuoso (2017) it is assumed that the intensity of the irregularity in 
the reported loss amount is constant over time and does not depend on the incurred-but-not-
yet-reported loss amount. To reflect this in the model, an arithmetic Brownian motion is used 
instead of a geometric one.  

After calculating the predictions associated with the available data, it was concluded that the 
model proposed by Pérez-Fructuoso (2017) best fit the real claim reporting process. However, 
it was also observed that the model developed by Pérez-Fructuoso (2016) fitted the data well 
during the first two weeks after the flood occurred. Therefore, it was proposed as future work 
to create a new model that would consider a mixed claim reporting rate, as proposed here, 
increasing during the first weeks and constant from a certain point until the end of the 
reporting process. 

Concerning the estimation of the model parameters, the technique used here, a machine 
learning technique from the area of Artificial Intelligence, has not been applied in any of the 
previous works related to the analyzed topic. 

Within the field of machine learning there is a set of methods based on natural processes 
such as natural selection, social behavior, genetics, neural processes, etc. In particular, the 
method used in this article falls within the so-called Evolutionary Computation (Holland, 
1975).  

Evolutionary Computation techniques use the process of evolution of species proposed by 
Darwin as the basis for the development of search and optimization algorithms. There are 
different algorithms depending on the problem to be solved. In this case the values to be 
adjusted are real numbers, so Evolutionary Strategies (Schwefel, 1988) that work directly 
with real numbers are applied. This type of strategy allows the search to be performed without 
incorporating knowledge of the problem, i.e., the search algorithm does not need to know 
how the models are defined, it only needs to know the results of the models (the error function 
to be minimized). In this way, the strategy evaluates the possible solutions (specific values 
for the model parameters), selects those that are better (have obtained a lower error value 
on the catastrophe data series) and from this selection generates new possible solutions 
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(applying operators typical of the evolutionary strategy) until the solution that minimizes the 
objective function is found. 

6. CONCLUSION 

The proposed model for the distribution of the total loss amount allows for a simple calculation 
of the loss index trigger for catastrophe bonds. The core of the model is the definition of the 
decreasing dynamics of the variable incurred-but-not-yet-reported loss amount based on a 
mixed model in which the claim reporting rate is defined as increasing up to a certain time 
and constant thereafter until the end of the reporting period considered. The claim reporting 
rate is random and is modeled by a geometric Wiener process to adequately represent the 
real reported loss amount. The reported loss amount, numerator of the loss ratio, is easily 
obtained by the difference between the catastrophe total loss amount and the incurred-but-
not-yet-reported loss amount. 

The relative simplicity of the presented model eases parameter estimation and simulation. In 
this work, the application of a machine learning techniques allows to estimate the parameters 
of the model by the optimization of the accumulative quadratic error. These techniques 
facilitate the estimation process for this type of applications where appropriate global 
parameters are not available to explain the whole data set, but specific parameters are 
needed to describe subsets corresponding to the same model in different situations.  

It should be noted that the available data are very specific to a geographical location such as 
Spain, whose meteorological characteristics are very different from those of the USA (a flood 
in Spain is far from being a hurricane in the USA), so that it is not possible a priori to 
extrapolate the results obtained on the adequacy of the models. This is because insurance 
companies do not disclose any information on all the available data they have, so it is difficult 
to obtain more data, which would be useful to test the validity of the proposed model and 
would allow more generalized real conclusions to be drawn. 

To continue this project, the first step to be taken is to obtain more real data. Then, it will be 
possible to test more accurately the proposed model and the previous models. However, if 
we want to go further, the models proposed by Pérez-Fructuoso (2008), (2016), (2017) and 
this one with stochastic volatility should be studied. Stochastic volatility seems to fit very well 
in many financial models, although it is complex to implement. 
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