Modelización de tasas de caídas utilizando machine learning: comparaci´on entre las técnicas de survival forest y cox propotional hazards

Autores/as

  • Jorge Luis Andrade Universidad Complutense de Madrid (España)
  • José Luis Valencia Universidad Complutense de Madrid (España)

DOI:

https://doi.org/10.26360/2021_7

Palabras clave:

análisis de supervivencia, machine learning, tasas de caídas, random survival forest

Resumen

Este estudio realiza un análisis comparativo del rendimiento de las técnicas de machine learning y tradicionales de análisis de supervivencia. Las técnicas comparadas son el tradicional modelo de Cox Proportional Hazards (CPH) y las técnicas de machine learning Random Survival Forest (RSF) y Conditional Inference Forest (CIF). Estas técnicas se aplican para el estudio de una cartera de seguros de una de las Compañías más grandes de Seguros de Ecuador. Este estudio demuestra un mejor rendimiento de las técnicas de machine learning en la predicción de la función de supervivencia medidos a través del C-index y el Brier Score. También se demuestra que la aportación predictiva de las covariables en el modelo RSF es consistente con el modelo tradicional CPH.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aleandri, M., and Eletti, A. (2020). Modelling dynamic lapse with survival analysis and machine learning in CPI. Decisions in Economics and Finance, 1–20.

Bauer, D., Gao, J., Moenig, T., Ulm, E. R., and Zhu, N. (2017). Policy- holder exercise behavior in life insurance: The state of affairs. North American Actuarial Journal, 21(4), 485–501.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Brockett, P., Golden, L., Guillén, M., Nielsen, J. P., Parner, J., and Perez-Marin, A. M. (2008). Survival analysis of a household portfolio of insurance policies: How much time do you have to stop total customer defection? Journal of Risk and Insurance, 75(3), 713–737.

Cramér, H. (1946). A contribution to the theory of statistical estimation. Scandinavian Actuarial Journal, 1946(1), 85–94.

Crumer, A. M. (2011). Comparison between Weibull and Cox proportional hazards models. Kansas State University Report, 1–34.

EIOPA. (2010). EIOPA Report on the Fifth Quantitative Impact Study (QIS5) for Solvency II.

Eling, M., and Kiesenbauer, D. (2014). What policy features determine life insurance lapse? an analysis of the german market. Journal of Risk and Insurance, 81(2), 241–269.

Eling, M., and Kochanski, M. (2013). Research on lapse in life insurance: What has been done and what needs to be done? The Journal of Risk Finance, 14(4), 392–413.

Fotso, S. et al. (2019). PySurvival: Open source package for survival analysis modeling. Python package version 1.0. https:// www. pysurvival.io/

Gerds, T. (2017). Pec: Prediction error curves for risk prediction models in survival analysis. R package version, 2(4).

Hothorn, T., Hornik, K., and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical statistics, 15(3), 651–674.

International Accounting Standards Board. (2017). IFRS17: Insurance contracts.

Ishwaran, H., and Kogalur, U. (2017). Randomforestsrc: Random forests for survival, regression and classification (rf-src). 2016. R package version, 2 (0).

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008). Random survival forests. The annals of applied statistics, 2(3), 841–860.

Lee, E. T., and Wang, J. (2013). Statistical methods for survival data analysis (Vol. 476). John Wiley and Sons.

Mogensen, U. B., Ishwaran, H., and Gerds, T. A. (2012). Evaluating ran dom forests for survival analysis using prediction error curves. Journal of statistical software, 50(11), 1.

Pinquet, J., Guillén, M. and Ayuso, M. (2011). Commitment and lapse behavior in long-term insurance: A case study. Journal of Risk and Insurance, 78(4), 983–1002.

Therneau, T. M., and Lumley, T. (2015). Package ‘survival’. R Top Doc, 128 (10), 28–33.

Wright, M. N., and Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1–17.

Zeileis, A., Hothorn, T., and Hornik, K. (2010). Party with the mob: Model-based recursive partitioning in R. R package version 0.9.

Descargas

Publicado

15-12-2021

Cómo citar

Andrade, J. L., & Valencia, J. L. (2021). Modelización de tasas de caídas utilizando machine learning: comparaci´on entre las técnicas de survival forest y cox propotional hazards. Anales Del Instituto De Actuarios Españoles, (27), 161–183. https://doi.org/10.26360/2021_7

Número

Sección

Artículos de investigación