Advanced model of calculation of Capital for operational risk: top-down approach
DOI:
https://doi.org/10.26360/2020_8Keywords:
operational risk, loss distribution approach, capital at risk, risk appetite, value at riskAbstract
The Entities are exposed to disruptive events derived from operational risk. To provide coverage against this risk, an advanced model has been developed to quantify the Economic Capital required to cover losses due to the said risk. The model is based on the Loss Distribution Approach (LDA), the Monte Carlo simulation and the Value at Risk measure, using only historical internal loss data. The model uses a “top-down” approach which consists in the calculation of the total Capital in the first instance and later the disaggregation of it among the Basel Cells. The model proves to be robust by capturing the Entity's true risk profile, solving the problem of data scarcity and achieving the maximum level of ex post granularity.
Downloads
References
Basel Committee on Banking Supervision. (2011). Principles for the Sound Management of Operational Risk. Bank for International Settlements.
Carrillo, S., & Suárez, A. (2006). Medición efectiva del riesgo operacional. Estabilidad financiera, 11, 61-90.
Comité de Supervisión Bancaria de Basilea. (2006). Observed range of practice in key elements of Advanced Measurement Approaches (AMA). Bank for International Settlements.
Day, N. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56(3), 463-74. DOI:10.1093/biomet/56.3.463
Fernández-Laviada, A. (2010). La gestión del riesgo operacional. De la teoría a su aplicación. ISBN: 9788495058652
Ferreras Salagre, A. (2007). Riesgo operacional. Enfoque de distribución de pérdidas en la práctica. Universidad Autónoma de Madrid. Madrid.
Frachot, A., Georges, P., & Roncalli, T. (2001). Loss distribution approach for operational risk. SSRN Electronic Journal, DOI:10.2139/ssrn.1032523
González, E. (2020). Modelo avanzado de cálculo de Capital por riesgo operacional (Trabajo Fin de Máster). Universidad Carlos III de Madrid.
Holgersson, M., & Jorner, U. (1978). Decomposition of a mixture into normal components: a review. International journal of bio-medical computing, 9(5), 367–392. DOI:10.1016/0020-7101(78)90044-2
Tan, W. Y., & Chang, W. C. (1972). Some comparisons of the method of moments and the method of maximum likelihood in estimating parameters of a mixture of two normal densities. Journal of the American Statistical Association, 67(339), 702-708. DOI:10.1080/01621459.1972.10481282
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Estefanía González Carbonell
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.