Construction of portfolios considering higuer moments for investment funds
DOI:
https://doi.org/10.26360/2024_01Keywords:
Return, Asymmetry, Kurtosis, Portfolio optimizationAbstract
The objective of this study is to build a portfolio using Higher Moments and considering ETF-type assets. A quantitative methodology is used that is not only based on the normality of the expected utility, but also on the inclusion of higher moments. The ultimate goal is to optimize the utility of each portfolio and determine the top three. When analyzing the returns of the portfolio made up of the LABU, PSQ, FXI, SPY and IWM assets, a decrease in returns was observed both in absolute and percentage terms when considering higher moments. Under normal conditions, most assets posted negative returns, and this trend intensified when including higher moments. Regarding the portfolios, it was found that Portfolio 2 showed an outstanding performance in terms of utility under the assumption of normality. Despite having significantly higher kurtosis than the other portfolios, this portfolio exhibited a higher positive mean and lower volatility. However, when considering the higher moments equation, it was revealed that none of the portfolios was viable as an investment option, indicating a higher risk in all of them.
Downloads
References
Arditti, D. (1967). Risk and the required return on equity. The Journal of Finance, 22(1), 19-36. https://doi.org/10.2307/2977297
Aksaraylı, M., y Pala, O. (2018). A polynomial goal programming model for portfolio optimization based on entropy and higher moments. Expert Systems with Applications, 94, 185-192. https://doi.org/10.1016/j.eswa.2017.10.056
BlackRock (2023). iShares Russell 2000 ETF. https://www.blackrock.com/cl/productos/239710/ishares-russell-2000-etf
Bergh, G., y Rensburg, P. (2008). Hedge funds and higher moment portfolio selection. Journal of Derivatives & Hedge Funds. https://doi.org/10.1057/JDHF.2008.14
Brito, R. P., Sebastião, H., y Godinho, P. (2019). Portfolio management with higher moments: the cardinality impact. International Transactions in Operational Research, 26(6), 2531-2560. https://doi.org/10.1111/itor.12404
Charupat, N., y Miu, P. (2013). The pricing efficiency of leveraged exchange‐traded funds: evidence from the US markets. Journal of Financial Research, 36(2), 253-278. https://doi.org/10.1111/j.1475-6803.2013.12010.x
Dahlquist, M., Farago, A., y Tédongap, R. (2017). Asymmetries and portfolio choice. The Review of Financial Studies, 30(2), 667-702. https://doi.org/10.1093/rfs/hhw091
Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, 38(1), 34-105.
Harvey, C.R., Liechty, J.C., Liechty, M.W., y Mueller, P. (2010). Portfolio selection with higher moments. Quantitative Finance, 10, 469 - 485. http://dx.doi.org/10.1080/14697681003756877
Harvey, C. R., y Siddique, A. (1999). Autoregressive conditional skewness. Journal of financial and quantitative analysis, 34(4), 465-487. https://doi.org/10.2307/2676230
Gong, X., Yu, C., Min, L., & Ge, Z. (2021). Regret theory-based fuzzy multi-objective portfolio selection model involving DEA cross efficiency and higher moments. Applied Soft Computing, 100, 106958. https://doi.org/10.1016/j.asoc.2020.106958
Jean, W. H. (1971). The extension of portfolio analysis to three or more parameters. Journal of financial and Quantitative Analysis, 6(1), 505-515. https://doi.org/10.2307/2330125
Konno, H., Hiroshi, S., y Hiroaki, Y. (1993). A mean-absolute deviation-skewness portfolio optimization model. Annals of Operations Research. 45(1), 205-220.
Lai, T. Y. (1991). Portfolio selection with skewness: a multiple-objective approach. Review of Quantitative Finance and Accounting, 1, 293-305. https://doi.org/10.1007/BF02408382
Levy, H., y Arditti, F. D. (1975). Valuation, Leverage and the Cost of Capital in the Case of Depreciable Assets: A Reply. The Journal of Finance, 30(1), 221-223. https://doi.org/10.2307/2978446
Levy, H., y Markowitz, H. M. (1979). Approximating expected utility by a function of mean and variance. The American Economic Review, 69(3), 308-317. https://www.jstor.org/stable/1807366
Markowitz, H. (1952). The utility of wealth. Journal of political Economy, 60(2), 151-158.
Mandelbrot, B. (1963). New methods in statistical economics. Journal of political economy, 71(5), 421-440. https://doi.org/10.1086/258792
Molina, M. (2022). Paso a paso. Prueba de la t de Student para muestras independientes. Revista electrónica AnestesiaR, 14(8), 1 - 5. https://doi.org/10.30445/rear.v14i8.1060
Pierro, M. D., y Mosevich, J. (2011). Effects of skewness and kurtosis on portfolio rankings. Quantitative Finance, 11(10), 1449-1453. https://doi.org/10.1080/14697688.2010.495723
Peiro, A. (1999). Skewness in financial returns. Journal of Banking & Finance, 23(6), 847-862. https://doi.org/10.1016/S0378-4266(98)00119-8
Premaratne, G., y Bera, A. K. (2000). Modeling asymmetry and excess kurtosis in stock return data. Illinois Research & Reference Working Paper No. 00-123. http://dx.doi.org/10.2139/ssrn.259009
Vilella, F. (2020). Rebrotes del Covid-19 mantendrán en auge a sectores ya beneficiados. Revista Uruguaya de Economía y Finanzas Personales, Portfolio, 102(8), 29 – 32.
Saranya, K., y Prasanna, P. K. (2014). Portfolio selection and optimization with higher moments: Evidence from the Indian stock market. Asia-Pacific Financial Markets, 21, 133-149. https://doi.org/10.1007/s10690-014-9180-0
Salinas, S. M., Maldonado, D. A., y Díaz, L. G. (2010). Estimación del riesgo en un portafolio de activos. Apuntes del CENES, 29(50), 117-150.
Sweta, K. (2023). Top-Ranked ETFs to Buy on Small-Cap Comeback. Yahoo Finance.
Steyn, J. P., y Theart, L. (2021). The pricing of skewness: Evidence from the Johannesburg Stock Exchange. Investment Analysts Journal, 50(2), 133-144. https://doi.org/10.1080/10293523.2021.1898744
TYVA (2023). Qué es el ETF SPY. https://tyba.com.co/blog/spy/
Xu, Z., Li, X., y Chevapatrakul, T. (2019). Return Asymmetry and the Cross Sección of Stock Returns. Social Science Research Network. http://dx.doi.org/10.2139/ssrn.2850842
Zhu, F., Luo, X., y Jin, X. (2019). Predicting the volatility of the iShares China Large-Cap ETF: What is the role of the SSE 50 ETF?. Pacific-Basin Finance Journal, 57, 101192. https://doi.org/10.1016/j.pacfin.2019.101192
Downloads
Published
Versions
- 2024-12-12 (2)
- 2024-07-31 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Genjis Ossa Gonzalez, Miriam Rojas Domínguez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.