How to use public-private databases in insurance risk management: geography, climate and people in motor insurance

Authors

DOI:

https://doi.org/10.26360/2024_08

Keywords:

data analytics, relational models, sustainability

Abstract

This work focuses on the use of public information sources in the application of relational models in insurance companies, for a better understanding of risks and assisting decision-making in new sustainability environments. Firstly, we propose using Eurostat's degree of urbanization methodology to group motor claims or policies into potentially more homogeneous categories in the insurance sector (urban / suburban / rural) for segmentation and analysis. Secondly, we analyze how insurance companies can use local weather information in conjunction with the degree of urbanization to model the number of motor claims in a specific geographic area. Finally, we apply relational models to databases with anonymized information on passengers in traffic accidents provided by the Spanish General Traffic Directorate for the purpose of better defining the characteristics of the claim based on the profile of the people inside the vehicle. It is about knowing, for example, the profile of the passengers in vehicles driven by elderly people, also in conjunction with sex and the geographical area. Insurance companies know the enormous potential of data analytics and must focus on the search for relationships using information that may be dispersed in multiple databases, including those that are for public use and that can facilitate the homogenization and comparison of results, together to the design of preventive and risk management policies. We also include the R codes making them available to the insurance sector and academia for use.

Downloads

Download data is not yet available.

References

Abdel-Aty, M., Lee, J., Siddiqui, C., & Choi, K. (2013). Geographical unit-based analysis in the context of transportation safety planning. Transportation Research. Part A, Policy and Practice, 49, 62–75

AEMET (2024). Valores climatológicos normales, Agencia Estatal de Meteorología. https://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos.

Alarifi, S. A., Abdel-Aty, M. A., Lee, J., & Park, J. (2017). Crash modeling for intersections and segments along corridors: A Bayesian multilevel joint model with random parameters. Analytic Methods in Accident Research, 16, 48–59. https://doi.org/10.1016/j.amar.2017.08.002

Ashley, W. S., Strader, S., Dziubla, D. C., & Haberlie, A. (2015). Driving blind: Weather-related vision hazards and fatal motor vehicle crashes. Bulletin of the American Meteorological Society, 96(5), 755-778

Ayuso, M., Guillén, M., & Pérez-Marín, M. (2014) Los hábitos de conducción al volante según el género en los seguros pay-as-you-drive o usage-based. Anales del Instituto de Actuarios Españoles, 20, 17-32

Ayuso, M., Sanchez, R., & Santolino, M. (2019). Longevidad de los conductores y antigüedad de los vehículos: impacto en la severidad de los accidentes. Anales del Instituto de Actuarios Españoles, 25, 33-53

Ayuso, M., Sanchez, R., & Santolino, M. (2020). Does longevity impact the severity of traffic crashes? A comparative study of young-older and old-older drivers. Journal of Safety Research, 73, 37-46

Bil, M., Andrasik, R., & Sedonik, J. (2019). Which curves are dangerous? A network-wide analysis of traffic crash and infrastructure data. Transportation Research. Part A, Policy and Practice, 120, 252–260

Black, A. W., Villarini, G., & Mote, T. L. (2017). Effects of Rainfall on Vehicle Crashes in Six U.S. States. Weather, Climate, and Society, 9(1), 53–70. https://doi.org/10.1175/WCAS-D-16-0035.1

Boucher, J. P., Pérez-Marín, A. M., & Santolino, M. (2013). Pay-As-You-Drive insurance: the effect of the kilometers on the risk of accident. Anales del Instituto de Actuarios Españoles, 3ª época, 19, 135-154

Casado-Sanz, N., Guirao, B., & Gálvez-Pérez, D. (2019). Population ageing and rural road accidents: Analysis of accident severity in traffic crashes with older pedestrians on Spanish crosstown roads. Research in Transportation Business & Management, 30, 100377. https://doi.org/10.1016/j.rtbm.2019.100377

Cespedes, L. E., Ayuso, M., & Santolino, M. (2024a). Distance between the driver's residence and the motor accident: is an insurance risk factor? UB RISKcenter Working paper, in progress

Cespedes, L. E., Santolino, M., & Ayuso, M. (2024b). Population density in aging societies and severity of motor vehicle crash injuries: the case of Spain. (Submitted)

Chazarra Bernabé, A., Flórez García, E., Peraza Sánchez, B., Tohá Rebull, T., Lorenzo Mariño, B., Criado Pinto, E., Moreno García, J.V., Romero Fresneda, R., & Botey Fullat, R. (2018). Mapas climáticos de España (1981-2010) y ETo (1996-2016). Ministerio para la Transición Ecológica, Agencia Estatal de Meteorología, Madrid

Clark, D. E., & Cushing, B. M. (2004). Rural and urban traffic fatalities, vehicle miles, and population density. Accident Analysis and Prevention, 36(6), 967–972. https://doi.org/10.1016/j.aap.2003.10.006

Codd, E. F. (1970). A relational model of data for large shared data banks. In Communications of the ACM, 13(6), 377-387

Denuit, M., Hainaut, D., & Trufin, J. (2020). Effective statistical learning methods for actuaries II : tree-based methods and extensions (1st ed. 2020). Springer International Publishing. https://doi.org/10.1007/978-3-030-57556-4

Eilers, P. H. C., & Marx, B. D. (1996). Flexible Smoothing with B-splines and Penalties. Statistical Science, 11(2):89-121. https://doi.org/10.1214/ss/1038425655

Eisenberg, D. (2004). The mixed effects of precipitation on traffic crashes. Accident Analysis and Prevention, 36(4), 637–647. https://doi.org/10.1016/S0001-4575(03)00085-X

European Commission (2023). Road safety in the EU: fatalities below pre-pandemic levels but progress remains too slow. Available at: https://transport.ec.europa.eu/news-events/news/road-safety-eu-fatalities-below-pre-pandemic-levels-progress-remains-too-slow-2023-02-21_en. Accessed 29 February 2024

Giraud, T. (2022). osrm: Interface Between R and the OpenStreetMap-Based Routing Service OSRM. Journal of Open Source Software, 7(78), 4574. doi:10.21105/joss.04574, https://doi.org/10.21105/joss.04574

Gutiérrez, E., Moral‐Benito, E., Oto‐Peralías, D., & Ramos, R. (2023). The spatial distribution of population in Spain: An anomaly in European perspective. Journal of Regional Science, 63(3), 728–750. https://doi.org/10.1111/jors.12638

Harland, K. K., Greenan, M., & Ramirez, M. (2014). Not just a rural occurrence: Differences in agricultural equipment crash characteristics by rural–urban crash site and proximity to town. Accident Analysis and Prevention, 70, 8–13. https://doi.org/10.1016/j.aap.2014.02.013

Harrington, J. L. (2016). Relational database design and implementation (Fourth edition). Morgan Kaufmann, an imprint of Elsevier

Hastie, T. J. (1992). Generalized Additive Models. Statistical Models in S (1st ed.). Routledge. https://doi.org/10.1201/9780203738535

Haynes, R., Lake, I. R., Kingham, S., Sabel, C. E., Pearce, J., & Barnett, R. (2008). The influence of road curvature on fatal crashes in New Zealand. Accident Analysis and Prevention, 40(3), 843–850. https://doi.org/10.1016/j.aap.2007.09.013

Keay, K., & Simmonds, I. (2005). The association of rainfall and other weather variables with road traffic volume in Melbourne, Australia. Accident Analysis and Prevention, 37(1), 109–124. https://doi.org/10.1016/j.aap.2004.07.005

Keeves, J., Ekegren, C. L., Beck, B., & Gabbe, B. J. (2019). The relationship between geographic location and outcomes following injury: A scoping review. Injury, 50(11), 1826–1838. https://doi.org/10.1016/j.injury.2019.07.013

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, Vol. 15, No. 3, 259-263

Lee, J., Abdel-Aty, M., & Choi, K. (2014). Analysis of residence characteristics of at-fault drivers in traffic crashes. Safety Science, 68, 6–13. https://doi.org/10.1016/j.ssci.2014.02.019

Lerner, E. B., Jehle, D. V. K., Billittier, A. J., Moscati, R. M., Connery, C. M., & Stiller, G. (2001). The influence of demographic factors on seatbelt use by adults injured in motor vehicle crashes. Accident Analysis and Prevention, 33(5), 659–662. https://doi.org/10.1016/S0001-4575(00)00080-4

Liu, C., & Sharma, A. (2018). Using the multivariate spatio-temporal Bayesian model to analyze traffic crashes by severity. Analytic Methods in Accident Research, 17, 14–31. https://doi.org/10.1016/j.amar.2018.02.001

Lord, D., Manar, A., & Vizioli, A. (2005). Modeling crash-flow-density and crash-flow-V/C ratio relationships for rural and urban freeway segments. Accident Analysis and Prevention, 37(1), 185–199. https://doi.org/10.1016/j.aap.2004.07.003

Moeinaddini, M., Asadi-Shekari, Z., & Zaly Shah, M. (2014). The relationship between urban street networks and the number of transport fatalities at the city level. Safety Science, 62, 114–120. https://doi.org/10.1016/j.ssci.2013.08.015

Naik, B., Tung, L. W., Zhao, S., & Khattak, A. J. (2016). Weather impacts on single-vehicle truck crash injury severity. Journal of Safety Research, 58, 57–65. https://doi.org/10.1016/j.jsr.2016.06.005

OECD (2021). Applying the Degree of Urbanisation A Methodological Manual to Define Cities, Towns and Rural Areas for International Comparisons. 2021 edn.OECD Publishing. Paris.

Peura, C., Kilch, J. A., & Clark, D. E. (2015). Evaluating adverse rural crash outcomes using the NHTSA State Data System. Accident Analysis and Prevention, 82, 257–262. https://doi.org/10.1016/j.aap.2015.06.005

Pljakić, M., Jovanović, D., & Matović, B. (2022). The influence of traffic-infrastructure factors on pedestrian accidents at the macro-level: The geographically weighted regression approach. Journal of Safety Research, 83, 248–259. https://doi.org/10.1016/j.jsr.2022.08.021

Prato, C. G., Kaplan, S., Patrier, A., & Rasmussen, T. K. (2018). Considering built environment and spatial correlation in modelling pedestrian injury severity. Traffic Injury Prevention, 19(1), 88-93 (2018). https://doi.org/10.1080/15389588.2017.1329535

R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Wang, C., Quddus, M. A., & Ison, S. G. (2013). The effect of traffic and road characteristics on road safety: A review and future research direction. Safety Science, 57, 264–275. https://doi.org/10.1016/j.ssci.2013.02.012

Watt, A., & Eng, N. (2014). Database Design. 2nd edn. BCcampus, British Columbia

Wijnen, W., Weijermars, W., Schoeters, A., van den Berghe, W., Bauer, R., Carnis, L., Elvik, R., & Martensen, H. (2019). An analysis of official road crash cost estimates in European countries. Safety Science, 113, 318–327. https://doi.org/10.1016/j.ssci.2018.12.004

Wüthrich, M. V., & Merz, M. (2023). Statistical Foundations of Actuarial Learning and its Applications (1st ed. 2023.). Springer Nature. https://doi.org/10.1007/978-3-031-12409-9

Xie, K., Yang, D., Ozbay, K., & Yang, H. (2019). Use of real-world connected vehicle data in identifying high-risk locations based on a new surrogate safety measure. Accident Analysis and Prevention, 125, 311–319. https://doi.org/10.1016/j.aap.2018.07.002

Zheng, L., Sayed, T., & Essa, M. (2019). Validating the bivariate extreme value modeling approach for road safety estimation with different traffic conflict indicators. Accident Analysis and Prevention, 123, 314–323. https://doi.org/10.1016/j.aap.2018.12.007

Zheng, L., Sayed, T., & Mannering, F. (2021). Modeling traffic conflicts for use in road safety analysis: A review of analytic methods and future directions. Analytic Methods in Accident Research, 29, 100142-. https://doi.org/10.1016/j.amar.2020.100142

Ziakopoulos, A. (2024). Analysis of harsh braking and harsh acceleration occurrence via explainable imbalanced machine learning using high-resolution smartphone telematics and traffic data. Accident Analysis and Prevention, 207, 107743-. https://doi.org/10.1016/j.aap.2024.107743

Ziakopoulos, A., & Yannis, G. (2020). A review of spatial approaches in road safety. Accident Analysis and Prevention, 135, 105323–105323. https://doi.org/10.1016/j.aap.2019.105323

Downloads

Published

2024-12-13

How to Cite

Cespedes Coimbra, L. E., Ayuso Gutierrez, M., & Santolino Prieto, M. Ángel. (2024). How to use public-private databases in insurance risk management: geography, climate and people in motor insurance. Anales Del Instituto De Actuarios Españoles, (30), 147–168. https://doi.org/10.26360/2024_08

Issue

Section

Research articles