Study of the mitigation mechanisms of the longevity risk in insurance and pensions

Authors

DOI:

https://doi.org/10.26360/2023_4

Keywords:

longevity risk, mortality risk, tâtonnement approach, MLS bond, CARA and CRRA equivalent utilities

Abstract

The phenomenon of longevity refers to the fact that the population lives longer, or lives longer than expected. In recent decades, the Spanish population and, in general, the world population, has increased its longevity. This evolution is reflected, for example, in life expectancy at birth and life expectancy at a certain age, such as retirement. The longevity risk is defined as the risk of losses in insurance and/or in complementary pensions, derived from a decrease in mortality rates. This longevity risk is very important in insurance that provides survivorship benefits, that is, when the insured lives to certain ages. The monetary repercussions of unforeseen (and therefore unpriced) longevity are significant. There are risk transfer mechanisms in financial markets that can be applied to longevity risk. Thus, various initial experiences of q-forward and swaps have appeared on the market in recent times, but there are difficulties in their generalization. The first goal is the study of the mechanisms for transferring the risk of longevity to the financial markets that have developed in recent years, their characteristics and their advantages and disadvantages. The second one is to develop valuation models of these instruments according to different hypotheses of future mortality and different mechanisms of price formation.

Downloads

Download data is not yet available.

References

Atance, D., 2020. Un nuevo modelo dinámico de mortalidad basado en la edad clave y uso de técnicas de remuestreo para su evaluación. Tesis doctoral. Universidad de Alcalá.

Atance, D., Varea, X., Claramunt, M., 2021. Atlas mundial de la longevidad 2021. Longevity Future, 1–141.

Ayuso, M., Corrales, H., Guillén, M., Martín, A.P., Rojo, J., 2007. Estadística actuarial vida. Publicacions i Edicions UB.

Barrieu, P., Bensusan, H., El Karoui, N., Hillairet, C., Loisel, S., Ravanelli, C., Salhi, Y., 2010. Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges. European Actuarial Journal, 1–26.

Bauer, D., Börger, M., Russ, J., 2010. On the Pricing of Longevity-Linked Securities. Insurance: Mathematics and Economics 46, 139–149.

Blake, D., Cairns, A.J.G., Dowd, K., 2006. Living with mortality: longevity bonds and other Mortality-Linked Securities. Cambridge University Press, 153–228.

Blake, D., Cairns, A.J.G., Dowd, K., Kessler, A.R., 2018a. Still living with mortality: the longevity risk transfer market after one decade. British Actuarial Journal, 1–80.

Blake, D., El Karoui, N., Loisel, S., MacMinn, R., 2018b. Longevity risk and capital markets: The 2015–16 update. Insurance: Mathematics and Economics, 157–173.

Bravo, J., Vidal, J., 2021. Pricing longevity derivatives via Fourier transforms. Insurance: Mathematics and Economics, 81–97.

Brouhns, N., Denuit, M., Vermunt, J.K., 2002. A poisson log-bilinear regression approach to the construction of projected lifetables. Insurance. Mathematics and Economics 31(3), 373–393.

Coughlan, G., Epstein, D., Honig, P., Sinha, A., 2007. q-Forwards: Derivatives for transferring longevity and mortality risk. North American Actuarial Journal, 1–5.

Cox, S., Lin, Y., 2007. Securitization of Catastrophe Mortality Risks. Insurance: Mathematics and Economics, 628–637.

Cox, S.H., Lin, Y., Pedersen, H., 2010. Mortality risk modeling: Applications to insurance securitization. Insurance: Mathematics and Economics, 242–253.

Cui, J., 2008. Longevity Risk Pricing. URL: http://dx.doi.org/10.2139/ssrn.972038. Última consulta: 27 de abril de 2022.

Currie, I., Kirkby, J., Durban, M., Eilers, P., 2004. Smooth Lee-Carter models and beyond. Workshop on Lee-Carter Methods.

Debonneuil, E., Loisel, S., Planchet, F., 2017. Do actuaries believe in longevity deceleration? HAL: open science, 1–31.

Denuit, M. y Goderniaux, A. (2004). Closing and projecting lifetables using loglinear models. Mitteilungen. der Schweizerischen Aktuarvereingung, 1:29–49.

Diccionario de Seguros Allianz. ¿Qué es un Reaseguro? URL: https://www.allianz.es/descubre-allianz/mediadores/diccionario-de-seguros/r/que-es-un-reaseguro.html . Última consulta: 26 de diciembre de 2022.

Geweke, J., 2001. A note on some limitations of CRRA utility. Economics Letters 71, 341–345.

Giménez, I., 2020. La Renta Hipotecaria: una solución eficaz para el riesgo de longevidad en la población española. Trabajo Final de Máster. Universitat de Barcelona.

Gollier, C., 2003. To Insure or Not to Insure?: An Insurance Puzzle. The Geneva Papers on Risk and Insurance Theory 28(1), 5–24.

Haberman, S., Renshaw, A., 2011. A comparative study of parametric mortality projection models. Insurance. Mathematics and Economics 48(1), 35–55.

INE. Tablas de mortalidad por año, sexo, edad y funciones. URL: https://www.ine.es/jaxiT3/Tabla.htm?t=27153. última consulta: 07 de abril de 2022.

Kaas, R., Goovaerts, M., Dhaene, J., Denuit, M., 2009. Modern Actuarial Risk Theory: Using R. Second edition. Springer.

Katzner, D., 1999. Methodological Individualism and the Walrasian Tâtonnement. Journal of Economic and Social Research, 5–33.

Kitti, M., 2010. Convergence of Iterative Tâtonnement without Price Normalization. Journal of Economic Dynamics and Control 34, 1077–1091.

Lee, R.D., Carter, L.R., 1992. Modeling and forecasting US mortality. Journal of the American Statistical Association 87, 659–671.

Leung, M., Fung, M.C., O’Hare, C., 2018. A comparative study of pricing approaches for longevity instruments. Insurance: Mathematics and Economics, 95–116.

Levantesi, S., Menzietti, M., 2006. Maximum Market Price of Longevity Risk under Solvency Regimes: The Case of Solvency II. Risks: MDPI, 1–21.

Solvencia II. Solvencia II (2ª ed.). URL: http://hdl.handle.net/2445/107502. En OMADO (Objectes i materials docents). (pp. 1-161). Dip`osit Digital de la UB. Col·lecció Omado. Última consulta: 20 de junio de 2022.

Uzawa, H., 1960. Walras’ Tâtonnement in the Theory of Exchange. The Review of Economic Studies 27, 182–194.

Westreicher, G., s.f. Modelo Logit. URL: https://economipedia.com/definiciones/modelo-logit.html. Última consulta: 08 de abril de 2022.

Zeddouk, F., Devolder, P., 2019. Pricing of Longevity Derivatives and Cost of Capital. Risks: MDPI, 1–29.

Zhou, R., Li, J., Tan, K., 2015. Economic Pricing of Mortality-Linked Securities: A Tâtonnement Approach. Journal of Risk and Insurance 82(1), 65–96.

Published

2023-12-13

How to Cite

López Bausan, M. J., & Claramunt Bielsa, M. M. (2023). Study of the mitigation mechanisms of the longevity risk in insurance and pensions. Anales Del Instituto De Actuarios Españoles, (29), 61–94. https://doi.org/10.26360/2023_4

Issue

Section

Research articles