SCR for premium and reserve risk in non-life insurance: limitations of the standard model and statistical alternatives
DOI:
https://doi.org/10.26360/2025_03Keywords:
SCR, non-Life Insurance, copulas, simulation, internal modelsAbstract
This article presents an alternative statistical approach for calculating the Solvency Capital Requirement (SCR) for premium and reserve risk in non-life insurance, complementing the standard methodology outlined in Solvency II. A statistic called ???? is proposed as an analysis tool, which is constructed without considering the diversification effects established by the standard formula To evaluate the usefulness of this alternative measure, Monte Carlo simulations and bootstrap techniques are applied under various probability distributions, including normal, uniform, log-normal, and Pareto. The analysis provides insights into how distributional assumptions and dependency structures influence the estimation of capital needs.The results highlight the potential of empirical quantile-based methods and internal modeling techniques, such as copulas, to enhance the understanding of risk aggregation in non-life portfolios. This study contributes to the actuarial literature by offering a complementary perspective on SCR estimation, supporting the development of tools that align with the diverse statistical characteristics of insurance portfolios.
Downloads
References
Abd Mutalip, F. N. N., Ismail, I., & Long, K. S. (2024). Capital Requirement for Non-life Insurance Industry using D-vine Copula: An Empirical Evidence from Malaysia. IAENG International Journal of Applied Mathematics, 54(8), 1694-1704.
Albarrán, I., & Alonso, P. (2010). Métodos estocásticos de estimación de las provisiones técnicas en el marco de Solvencia II. Fundación MAPFRE, Instituto de Ciencias del Seguro.
Barañano Abasolo, A., De la Peña Esteban, J. I., & Garayeta Bajo, A. (2016). Medición del riesgo de suscripción mediante modelos internos en Solvencia II. Innovar, 26(62), 113-128. https://doi.org/10.15446/innovar.v26n62.59392.
Bølviken, E., & Guillen, M. (2017). Risk aggregation in Solvency II through recursive log-normals. Insurance: Mathematics and Economics, 73, 20-26.
Christiansen, M. C., & Niemeyer, A. (2014). Fundamental definition of the solvency capital requirement in solvency II. ASTIN Bulletin: The Journal of the IAA, 44(3), 501-533.
EIOPA (2014). The underlying assumptions in the standard formula for the Solvency Capital Requirement calculation. EIOPA-14-322. https://register.eiopa.europa.eu/Publications/Standards/EIOPA-14-322_Underlying_Assumptions.pdf
EIOPA (2015a). Delegated Regulation (EC) 2015/35. https://eur-lex.europa.eu/eli/reg_del/2015/35/oj
EIOPA. (2015b). Guidelines on the use of internal models. https://www.eiopa.europa.eu/document/download/14416d09-81f8-454b-b967-6c5315515936_es?filename=Guidelines%20on%20the%20use%20of%20internal%20models
Eling, M., & Jung, K. (2020). Risk aggregation in non-life insurance: Standard models vs. internal models. Insurance: Mathematics and Economics, 95, 183-198.
Ferri, A., Bermúdez, L., & Guillén, M. (2013). Influencia de la variable aleatoria implícita en la fórmula estándar en el cálculo del SCR del riesgo de suscripción no vida. Anales Del Instituto De Actuarios Españoles, 19, 63-84.
Filipović, D. (2009). Multi-level risk aggregation. ASTIN Bulletin: The Journal of the IAA, 39(2), 565-575.
Garayeta, A., De la Peña, J. I., & Trigo, E. (2022). Towards a global solvency model in the insurance market: A qualitative analysis. Sustainability, 14(11), 6465.
Gross, J., & Ligges, U. (2015). nortest: Tests for Normality. https://CRAN.R-project.org/package=nortest
RStudio Team. (2020). RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/
R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
Siopi, E., Poufinas, T., Chen, J. M., & Agiropoulos, C. (2023). Can regulation affect the solvency of insurers? New evidence from european insurers. International Advances in Economic Research, 29(1-2), 15-30.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (New York). Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H., & Bryan, J. (2023). readxl: Read Excel Files. https://CRAN.R-project.org/package=readxl
Wickham, H., & Seidel, D. (2022). scales: Scale Functions for Visualization. https://CRAN.R-project.org/package=scales

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jaime Guiance Lapido, Francisco Rabadán, Sonia de Paz

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.